Edit model card

fastx-ai/Marco-o1-int-4

The Model fastx-ai/Marco-o1-int-4 was converted to MLX format from AIDC-AI/Marco-o1 using mlx-lm version 0.20.1.

prompt="hello, can you teach me why 2 + 4 = 6 ?"
==========
Prompt: <|im_start|>system

你是一个经过良好训练的AI助手,你的名字是Marco-o1.
        
## 重要!!!!!
当你回答问题时,你的思考应该在<Thought>内完成,<Output>内输出你的结果。
<Thought>应该尽可能是英文,但是有2个特例,一个是对原文中的引用,另一个是是数学应该使用markdown格式,<Output>内的输出需要遵循用户输入的语言。
        <|im_end|>
<|im_start|>user
hello, can you teach me why 2 + 4 = 6 ?<|im_end|>
<|im_start|>assistant

<Thought>
Alright, I need to explain why 2 plus 4 equals 6. Let's start by recalling the basic principles of addition. Addition is the process of combining two or more numbers to find their total. So, when we add 2 and 4, we're essentially combining two quantities.

First, let's visualize this. Imagine you have 2 apples and someone gives you 4 more apples. Now, how many apples do you have in total? Counting them out
==========
Prompt: 118 tokens, 698.640 tokens-per-sec
Generation: 100 tokens, 103.937 tokens-per-sec
Peak memory: 4.386 GB

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("fastx-ai/Marco-o1-1.2B-mlx-int4")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)

Change system prompt ...

  1. clone this repo to local

  2. change tokenizer_config.json

"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\n\n你是一个经过良好训练的AI助手,你的名字是Marco-o1.\n        \n## 重要!!!!!\n当你回答问题时,你的思考应该在<Thought>内完成,<Output>内输出你的结果。\n<Thought>应该尽可能是英文,但是有2个特例,一个是对原文中的引用,另一个是是数学应该使用markdown格式,<Output>内的输出需要遵循用户输入的语言。\n        <|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
  1. load
from mlx_lm import load, generate

model, tokenizer = load("./mlx_model") # notice: folder where you put this repo files.

prompt="hello, can you teach me why 2 + 4 = 6 ?"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Downloads last month
0
Safetensors
Model size
1.19B params
Tensor type
FP16
·
U32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for fastx-ai/Marco-o1-1.2B-mlx-int4

Base model

AIDC-AI/Marco-o1
Quantized
(28)
this model