Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- cs
|
4 |
+
- de
|
5 |
+
tags:
|
6 |
+
- Czech
|
7 |
+
- German
|
8 |
+
- bilingual
|
9 |
+
- KKY
|
10 |
+
- FAV
|
11 |
+
license: cc-by-nc-sa-4.0
|
12 |
+
---
|
13 |
+
|
14 |
+
# wav2vec2-base-cs-de-50k
|
15 |
+
This is a bilingual Wav2Vec 2.0 base model pre-trained from 100 thousand hours of speech (50 thousand hours of Czech and 50 thousand hours of German).
|
16 |
+
It has been released along with a paper **A Comparative Analysis of Bilingual and Trilingual Wav2Vec Models for
|
17 |
+
Automatic Speech Recognition in Multilingual Oral History Archives** accepted to INTERSPEECH2024 conference.
|
18 |
+
|
19 |
+
## Paper
|
20 |
+
The pre-print of our paper is available at http://arxiv.org/abs/2407.17160.
|
21 |
+
|
22 |
+
### All pre-trained models released along with the paper
|
23 |
+
- [fav-kky/wav2vec2-base-cs-50k](https://huggingface.co/fav-kky/wav2vec2-base-cs-50k) (monolingual Czech)
|
24 |
+
- [fav-kky/wav2vec2-base-de-50k](https://huggingface.co/fav-kky/wav2vec2-base-de-50k) (monolingual German)
|
25 |
+
- [fav-kky/wav2vec2-base-cs-en-100k](https://huggingface.co/fav-kky/wav2vec2-base-cs-en-100k) (bilingual Czech+English)
|
26 |
+
- [fav-kky/wav2vec2-base-cs-de-100k](https://huggingface.co/fav-kky/wav2vec2-base-cs-de-100k) (bilingual Czech+German)
|
27 |
+
- [fav-kky/wav2vec2-base-en-de-100k](https://huggingface.co/fav-kky/wav2vec2-base-en-de-100k) (bilingual English+German)
|
28 |
+
- [fav-kky/wav2vec2-base-cs-en-de-150k](https://huggingface.co/fav-kky/wav2vec2-base-cs-en-de-150k) (trilingual Czech+English+German)
|
29 |
+
|
30 |
+
## Citation
|
31 |
+
If you find this model useful, please cite our paper:
|
32 |
+
```
|
33 |
+
@inproceedings{lehecka2024bitrilingual,
|
34 |
+
title = {{A Comparative Analysis of Bilingual and Trilingual Wav2Vec Models for Automatic Speech Recognition in Multilingual Oral History Archives}},
|
35 |
+
author = {
|
36 |
+
Jan Lehe\v{c}ka and
|
37 |
+
Josef V. Psutka and
|
38 |
+
Lubo\v{s} \v{S}m\'{i}dl and
|
39 |
+
Pavel Ircing and
|
40 |
+
Josef Psutka
|
41 |
+
},
|
42 |
+
booktitle={Proc. Interspeech 2024},
|
43 |
+
note={In Press},
|
44 |
+
year={2024},
|
45 |
+
url={https://arxiv.org/abs/2407.17160},
|
46 |
+
}
|
47 |
+
```
|
48 |
+
|
49 |
+
## Usage
|
50 |
+
This model does not have a tokenizer as it was pretrained on audio alone.
|
51 |
+
In order to use this model for speech recognition, a tokenizer should be created
|
52 |
+
and the model should be [fine-tuned](https://huggingface.co/blog/fine-tune-wav2vec2-english) on labeled ASR data.
|
53 |
+
|
54 |
+
Inputs must be 16kHz mono audio files.
|
55 |
+
|
56 |
+
This model can be used e.g., to extract per-frame contextual embeddings from audio:
|
57 |
+
```python
|
58 |
+
from transformers import Wav2Vec2Model, Wav2Vec2FeatureExtractor
|
59 |
+
import torchaudio
|
60 |
+
|
61 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("fav-kky/wav2vec2-base-cs-de-100k")
|
62 |
+
model = Wav2Vec2Model.from_pretrained("fav-kky/wav2vec2-base-cs-de-100k")
|
63 |
+
|
64 |
+
speech_array, sampling_rate = torchaudio.load("/path/to/audio/file.wav")
|
65 |
+
inputs = feature_extractor(
|
66 |
+
speech_array,
|
67 |
+
sampling_rate=16_000,
|
68 |
+
return_tensors="pt"
|
69 |
+
)["input_values"][0]
|
70 |
+
|
71 |
+
output = model(inputs)
|
72 |
+
embeddings = output.last_hidden_state.detach().numpy()[0]
|
73 |
+
```
|
74 |
+
|
75 |
+
## Related works
|