--- license: mit --- FAVA, a verification model. ``` import torch import vllm from transformers import AutoTokenizer, AutoModelForSequenceClassification model = vllm.LLM(model="fava-uw/fava-model") sampling_params = vllm.SamplingParams( temperature=0, top_p=1.0, max_tokens=1024, ) INPUT = "Read the following references:\n{evidence}\nPlease identify all the errors in the following text using the information in the references provided and suggest edits if necessary:\n[Text] {output}\n[Edited] " output = "" # add your passage to verify evidence = "" # add a piece of evidence prompts = [INPUT.format_map({"evidence": evidence, "output": output})] outputs = model.generate(prompts, sampling_params) outputs = [it.outputs[0].text for it in outputs] print(outputs[0]) ```