fbaldassarri's picture
Initial Upload
e6226a0 verified
from typing import Optional, Tuple
import torch
from torch import nn
from .configuration_italia import ItaliaConfig
from transformers.models.gpt_neox import modeling_gpt_neox
# inject a GPTNeoXLayer no post layer norm
class GPTNeoXLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
self.attention = modeling_gpt_neox.GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config)
self.mlp = modeling_gpt_neox.GPTNeoXMLP(config)
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
layer_past: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
):
attention_layer_outputs = self.attention(
self.input_layernorm(hidden_states),
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
attn_output = self.post_attention_dropout(attn_output)
outputs = attention_layer_outputs[1:]
# self.use_parallel_residual: default true
# x = x + attn(ln1(x)) + mlp(ln1(x))
mlp_output = self.mlp(self.input_layernorm(hidden_states))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output + hidden_states
if use_cache:
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
else:
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
return outputs
modeling_gpt_neox.GPTNeoXLayer = GPTNeoXLayer
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM, GPTNeoXModel
class ItaliaForCausalLM(GPTNeoXForCausalLM):
config_class = ItaliaConfig
def __init__(self, config):
super().__init__(config)
self.gpt_neox = GPTNeoXModel(config)
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
# Initialize weights and apply final processing
self.post_init()