fbaldassarri commited on
Commit
a615178
·
verified ·
1 Parent(s): 17926f5

Initial Upload

Browse files
README.md CHANGED
@@ -1,3 +1,84 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - it
4
+ - en
5
+ tags:
6
+ - pretrained
7
+ - pytorch
8
+ - causal-lm
9
+ - minerva
10
+ - autoround
11
+ - intel-autoround
12
+ - woq
13
+ - gptq
14
+ - intel
15
+ license: apache-2.0
16
+ model_name: Minerva 350M base v1.0
17
+ base_model:
18
+ - sapienzanlp/Minerva-350M-base-v1.0
19
+ inference: false
20
+ model_creator: sapienzanlp
21
+ datasets:
22
+ - uonlp/CulturaX
23
+ pipeline_tag: text-generation
24
+ prompt_template: '{prompt}
25
+ '
26
+ quantized_by: fbaldassarri
27
+ ---
28
+
29
+ ## Model Information
30
+
31
+ Quantized version of [sapienzanlp/Minerva-350M-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-350M-base-v1.0) using torch.float32 for quantization tuning.
32
+ - 4 bits (INT4)
33
+ - group size = 128
34
+ - Asymmetrical Quantization
35
+ - Method WoQ (AutoRound format)
36
+
37
+ Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
38
+
39
+ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.3
40
+
41
+ Note: this INT4 version of Minerva-350M-base-v1.0 has been quantized to run inference through CPU.
42
+
43
+ ## Replication Recipe
44
+
45
+ ### Step 1 Install Requirements
46
+
47
+ I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
48
+
49
+ ```
50
+ wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz
51
+ tar -xvzf v0.4.3.tar.gz
52
+ cd auto-round-0.4.3
53
+ pip install -r requirements-cpu.txt --upgrade
54
+ ```
55
+
56
+ ### Step 2 Build Intel AutoRound wheel from sources
57
+
58
+ ```
59
+ pip install -vvv --no-build-isolation -e .[cpu]
60
+ ```
61
+
62
+ ### Step 3 Script for Quantization
63
+
64
+ ```
65
+ from transformers import AutoModelForCausalLM, AutoTokenizer
66
+ model_name = "sapienzanlp/Minerva-350M-base-v1.0"
67
+ model = AutoModelForCausalLM.from_pretrained(model_name)
68
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
69
+ from auto_round import AutoRound
70
+ bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False
71
+ autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
72
+ autoround.quantize()
73
+ output_dir = "./AutoRound/sapienzanlp_Minerva-350M-base-v1.0-autoround-int4-gs128-asym"
74
+ autoround.save_quantized(output_dir, format='auto_round', inplace=True)
75
+ ```
76
+
77
+ ## License
78
+
79
+ [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
80
+
81
+ ## Disclaimer
82
+
83
+ This quantized model comes with no warranty. It has been developed only for research purposes.
84
+
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sapienzanlp/Minerva-350M-base-v1.0",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 72,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 1152,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4032,
14
+ "max_position_embeddings": 16384,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 16,
18
+ "num_key_value_heads": 4,
19
+ "quantization_config": {
20
+ "amp": false,
21
+ "autoround_version": "0.4.3",
22
+ "backend": "auto_round:exllamav2",
23
+ "batch_size": 4,
24
+ "bits": 4,
25
+ "data_type": "int",
26
+ "dataset": "NeelNanda/pile-10k",
27
+ "enable_minmax_tuning": true,
28
+ "enable_norm_bias_tuning": false,
29
+ "enable_quanted_input": true,
30
+ "gradient_accumulate_steps": 1,
31
+ "group_size": 128,
32
+ "iters": 200,
33
+ "low_gpu_mem_usage": false,
34
+ "lr": 0.005,
35
+ "minmax_lr": 0.005,
36
+ "nsamples": 128,
37
+ "quant_method": "intel/auto-round",
38
+ "scale_dtype": "torch.float16",
39
+ "seqlen": 512,
40
+ "sym": false,
41
+ "to_quant_block_names": null
42
+ },
43
+ "rms_norm_eps": 1e-05,
44
+ "rope_theta": 10000.0,
45
+ "sliding_window": 2048,
46
+ "tie_word_embeddings": false,
47
+ "torch_dtype": "float32",
48
+ "transformers_version": "4.47.1",
49
+ "use_cache": false,
50
+ "vocab_size": 32768
51
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.47.1",
6
+ "use_cache": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4880b385a129e25e8d0ae32e360e1a55673f7fa1358430b3a760f4c615df05
3
+ size 446328528
quantization_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "sym": false,
5
+ "data_type": "int",
6
+ "enable_quanted_input": true,
7
+ "enable_minmax_tuning": true,
8
+ "seqlen": 512,
9
+ "batch_size": 4,
10
+ "scale_dtype": "torch.float16",
11
+ "lr": 0.005,
12
+ "minmax_lr": 0.005,
13
+ "gradient_accumulate_steps": 1,
14
+ "iters": 200,
15
+ "amp": false,
16
+ "nsamples": 128,
17
+ "low_gpu_mem_usage": false,
18
+ "to_quant_block_names": null,
19
+ "enable_norm_bias_tuning": false,
20
+ "dataset": "NeelNanda/pile-10k",
21
+ "autoround_version": "0.4.3",
22
+ "quant_method": "intel/auto-round",
23
+ "backend": "auto_round:exllamav2"
24
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb411d9f702041597b9c84f0c99ee6601f02631467e2a76722db3ca1a2a77bf5
3
+ size 795167
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "extra_special_tokens": {},
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": null,
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true
43
+ }