File size: 6,301 Bytes
1f0694c ac4273c 32bd8fa ac4273c 32bd8fa 1f0694c ac4273c 1f0694c ac4273c 32bd8fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
datasets:
- Undi95/toxic-dpo-v0.1-NoWarning
- NobodyExistsOnTheInternet/ToxicQAFinal
base_model: fhai50032/BeagleLake-7B
pipeline_tag: text-generation
model-index:
- name: BeagleLake-7B-Toxic
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.19
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.67
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
---
# Uploaded model
- **!Developed by:** fhai50032
- **License:** apache-2.0
- **Finetuned from model :** fhai50032/BeagleLake-7B
More Uncensored out of the gate without any prompting;
trained on [Undi95/toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) and other unalignment dataset
Trained on T4 GPU on Colab
**QLoRA (4bit)**
Params to replicate training
Peft Config
```
r = 64,
target_modules = ['v_proj', 'down_proj', 'up_proj',
'o_proj', 'q_proj', 'gate_proj', 'k_proj'],
lora_alpha = 64, #weight_scaling
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
use_gradient_checkpointing = False,#True,#
random_state = 3407,
max_seq_length = 1024,
```
Training args
```
per_device_train_batch_size = 2,
gradient_accumulation_steps = 6,
gradient_checkpointing=False,
# warmup_ratio = 0.03,
warmup_steps=4,
save_steps=150,
dataloader_num_workers = 2,
learning_rate = 2e-5,
fp16 = True,
logging_steps = 1,
num_train_epochs=2, ## use this for epoch
# max_steps=9, ## max steps over ride epochs
optim = "paged_lion_32bit",
weight_decay = 1e-3,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
packing=False,
report_to="wandb"
# neftune_noise_alpha=10
```
```
steps: toxic_qa : 55(approx)
steps: undi95/toxic : 15
```
**Interernce Code**
-Supports Alpaca , ChatML and maybe others too
```python
pip install -qU transformers accelerate bitsandbytes
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch
model_name = "fhai50032/BeagleLake-7B-Toxic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# use 4bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True,
# use accelerate to spread model across multiple GPUs
device_map="auto",
torch_dtype=torch.float16,
)
model.config.use_cache = False
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto")
messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail
\n\nAssistant:
"""
outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8)
print(outputs[0]['generated_text'])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__BeagleLake-7B-Toxic)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.24|
|AI2 Reasoning Challenge (25-Shot)|65.19|
|HellaSwag (10-Shot) |83.83|
|MMLU (5-Shot) |62.82|
|TruthfulQA (0-shot) |57.67|
|Winogrande (5-shot) |82.32|
|GSM8k (5-shot) |63.61|
|