File size: 2,995 Bytes
1f0694c ac4273c 1f0694c ac4273c 1f0694c ac4273c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: fhai50032/BeaglLake-7B
datasets:
- Undi95/toxic-dpo-v0.1-NoWarning
- NobodyExistsOnTheInternet/ToxicQAFinal
pipeline_tag: text-generation
---
# Uploaded model
- **!Developed by:** fhai50032
- **License:** apache-2.0
- **Finetuned from model :** fhai50032/BeagleLake-7B
More Uncensored out of the gate without any prompting;
trained on [Undi95/toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) and other unalignment dataset
Trained on T4 GPU on Colab
**QLoRA (4bit)**
Params to replicate training
Peft Config
```
r = 64,
target_modules = ['v_proj', 'down_proj', 'up_proj',
'o_proj', 'q_proj', 'gate_proj', 'k_proj'],
lora_alpha = 64, #weight_scaling
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
use_gradient_checkpointing = False,#True,#
random_state = 3407,
max_seq_length = 1024,
```
Training args
```
per_device_train_batch_size = 2,
gradient_accumulation_steps = 6,
gradient_checkpointing=False,
# warmup_ratio = 0.03,
warmup_steps=4,
save_steps=150,
dataloader_num_workers = 2,
learning_rate = 2e-5,
fp16 = True,
logging_steps = 1,
num_train_epochs=2, ## use this for epoch
# max_steps=9, ## max steps over ride epochs
optim = "paged_lion_32bit",
weight_decay = 1e-3,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
packing=False,
report_to="wandb"
# neftune_noise_alpha=10
```
```
steps: toxic_qa : 55(approx)
steps: undi95/toxic : 15
```
**Interernce Code**
-Supports Alpaca , ChatML and maybe others too
```python
pip install -qU transformers accelerate bitsandbytes
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch
model_name = "fhai50032/BeagleLake-7B-Toxic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# use 4bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True,
# use accelerate to spread model across multiple GPUs
device_map="auto",
torch_dtype=torch.float16,
)
model.config.use_cache = False
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto")
messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail
\n\nAssistant:
"""
outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8)
print(outputs[0]['generated_text'])
``` |