Update README.md
Browse files
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BERT-DE-NER
|
2 |
+
|
3 |
+
## What is it?
|
4 |
+
This is a Geramn BERT model fine-tuned for named entity recognition.
|
5 |
+
|
6 |
+
## Base model & training
|
7 |
+
This model is based on [bert-base-german-dbmdz-cased](https://huggingface.co/bert-base-german-dbmdz-cased) and has been fine-tuned
|
8 |
+
for NER on the training data from [GermEval2014](https://sites.google.com/site/germeval2014ner).
|
9 |
+
|
10 |
+
## Model results
|
11 |
+
The results on the test data from GermEval2014 are (entities only):
|
12 |
+
|
13 |
+
| Precision | Recall | F1-Score |
|
14 |
+
|----------:|-------:|---------:|
|
15 |
+
| 0.817 | 0.842 | 0.829 |
|
16 |
+
|
17 |
+
## How to use
|
18 |
+
```Python
|
19 |
+
>>> from transformers import pipeline
|
20 |
+
|
21 |
+
>>> classifier = pipeline('ner', model="fhswf/bert_de_ner")
|
22 |
+
>>> classifier('Von der Organisation „medico international“ hieß es, die EU entziehe sich seit vielen Jahren der Verantwortung für die Menschen an ihren Außengrenzen.')
|
23 |
+
|
24 |
+
[{'word': 'med', 'score': 0.9996621608734131, 'entity': 'B-ORG', 'index': 6},
|
25 |
+
{'word': '##ico', 'score': 0.9995362162590027, 'entity': 'I-ORG', 'index': 7},
|
26 |
+
{'word': 'international',
|
27 |
+
'score': 0.9996932744979858,
|
28 |
+
'entity': 'I-ORG',
|
29 |
+
'index': 8},
|
30 |
+
{'word': 'eu', 'score': 0.9997008442878723, 'entity': 'B-ORG', 'index': 14}]
|
31 |
+
|
32 |
+
```
|