from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
model_dir = "." # ${MODEL_DIR}
# load dataset
dataset = load_dataset("allegro_reviews", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"",
"",
"",
"",
"",
])
# Save files to disk
tokenizer.save(f"{model_dir}/tokenizer.json")