File size: 22,790 Bytes
e8c4ed3 97ec1af e8c4ed3 97ec1af e8c4ed3 97ec1af e8c4ed3 97ec1af e8c4ed3 97ec1af e8c4ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Different datasets implementation plus a general port for all the datasets."""
INTERNAL = False # pylint: disable=g-statement-before-imports
import json
import os, time
from os import path
import queue
import threading
if not INTERNAL:
import cv2 # pylint: disable=g-import-not-at-top
import jax
import numpy as np
from PIL import Image
from nerf import utils
from nerf import clip_utils
def get_dataset(split, args, clip_model = None):
return dataset_dict[args.dataset](split, args, clip_model)
def convert_to_ndc(origins, directions, focal, w, h, near=1.):
"""Convert a set of rays to NDC coordinates."""
# Shift ray origins to near plane
t = -(near + origins[..., 2]) / directions[..., 2]
origins = origins + t[..., None] * directions
dx, dy, dz = tuple(np.moveaxis(directions, -1, 0))
ox, oy, oz = tuple(np.moveaxis(origins, -1, 0))
# Projection
o0 = -((2 * focal) / w) * (ox / oz)
o1 = -((2 * focal) / h) * (oy / oz)
o2 = 1 + 2 * near / oz
d0 = -((2 * focal) / w) * (dx / dz - ox / oz)
d1 = -((2 * focal) / h) * (dy / dz - oy / oz)
d2 = -2 * near / oz
origins = np.stack([o0, o1, o2], -1)
directions = np.stack([d0, d1, d2], -1)
return origins, directions
class Dataset(threading.Thread):
"""Dataset Base Class."""
def __init__(self, split, flags, clip_model):
super(Dataset, self).__init__()
self.queue = queue.Queue(3) # Set prefetch buffer to 3 batches.
self.daemon = True
self.use_pixel_centers = flags.use_pixel_centers
self.split = split
if split == "train":
self._train_init(flags, clip_model)
elif split == "test":
self._test_init(flags)
else:
raise ValueError(
"the split argument should be either \"train\" or \"test\", set"
"to {} here.".format(split))
self.batch_size = flags.batch_size // jax.process_count()
self.batching = flags.batching
self.render_path = flags.render_path
self.far = flags.far
self.near = flags.near
self.max_steps = flags.max_steps
self.start()
def __iter__(self):
return self
def __next__(self):
"""Get the next training batch or test example.
Returns:
batch: dict, has "pixels" and "rays".
"""
x = self.queue.get()
if self.split == "train":
return utils.shard(x)
else:
return utils.to_device(x)
def peek(self):
"""Peek at the next training batch or test example without dequeuing it.
Returns:
batch: dict, has "pixels" and "rays".
"""
x = self.queue.queue[0].copy() # Make a copy of the front of the queue.
if self.split == "train":
return utils.shard(x)
else:
return utils.to_device(x)
def run(self):
if self.split == "train":
next_func = self._next_train
else:
next_func = self._next_test
while True:
self.queue.put(next_func())
@property
def size(self):
return self.n_examples
def _train_init(self, flags, clip_model):
"""Initialize training."""
self._load_renderings(flags, clip_model)
self._generate_rays()
if flags.batching == "all_images":
# flatten the ray and image dimension together.
self.images = self.images.reshape([-1, 3])
self.rays = utils.namedtuple_map(lambda r: r.reshape([-1, r.shape[-1]]),
self.rays)
elif flags.batching == "single_image":
self.images = self.images.reshape([-1, self.resolution, 3])
self.rays = utils.namedtuple_map(
lambda r: r.reshape([-1, self.resolution, r.shape[-1]]), self.rays)
else:
raise NotImplementedError(
f"{flags.batching} batching strategy is not implemented.")
def _test_init(self, flags):
self._load_renderings(flags, clip_model = None)
self._generate_rays()
self.it = 0
def _next_train(self):
"""Sample next training batch."""
if self.batching == "all_images":
ray_indices = np.random.randint(0, self.rays[0].shape[0],
(self.batch_size,))
batch_pixels = self.images[ray_indices]
batch_rays = utils.namedtuple_map(lambda r: r[ray_indices], self.rays)
raise NotImplementedError("image_index not implemented for batching=all_images")
elif self.batching == "single_image":
image_index = np.random.randint(0, self.n_examples, ())
ray_indices = np.random.randint(0, self.rays[0][0].shape[0],
(self.batch_size,))
batch_pixels = self.images[image_index][ray_indices]
batch_rays = utils.namedtuple_map(lambda r: r[image_index][ray_indices],
self.rays)
else:
raise NotImplementedError(
f"{self.batching} batching strategy is not implemented.")
return {"pixels": batch_pixels, "rays": batch_rays, "image_index": image_index}
def _next_test(self):
"""Sample next test example."""
idx = self.it
self.it = (self.it + 1) % self.n_examples
if self.render_path:
return {"rays": utils.namedtuple_map(lambda r: r[idx], self.render_rays)}
else:
return {"pixels": self.images[idx],
"rays": utils.namedtuple_map(lambda r: r[idx], self.rays),
"image_index": idx}
# TODO(bydeng): Swap this function with a more flexible camera model.
def _generate_rays(self):
"""Generating rays for all images."""
pixel_center = 0.5 if self.use_pixel_centers else 0.0
x, y = np.meshgrid( # pylint: disable=unbalanced-tuple-unpacking
np.arange(self.w, dtype=np.float32) + pixel_center, # X-Axis (columns)
np.arange(self.h, dtype=np.float32) + pixel_center, # Y-Axis (rows)
indexing="xy")
camera_dirs = np.stack([(x - self.w * 0.5) / self.focal,
-(y - self.h * 0.5) / self.focal, -np.ones_like(x)],
axis=-1)
directions = ((camera_dirs[None, ..., None, :] *
self.camtoworlds[:, None, None, :3, :3]).sum(axis=-1))
origins = np.broadcast_to(self.camtoworlds[:, None, None, :3, -1],
directions.shape)
viewdirs = directions / np.linalg.norm(directions, axis=-1, keepdims=True)
self.rays = utils.Rays(
origins=origins, directions=directions, viewdirs=viewdirs)
def camtoworld_matrix_to_rays(self, camtoworld, downsample = 1):
""" render one instance of rays given a camera to world matrix (4, 4) """
pixel_center = 0.5 if self.use_pixel_centers else 0.0
# TODO @Alex: apply mesh downsampling here
x, y = np.meshgrid( # pylint: disable=unbalanced-tuple-unpacking
np.arange(self.w, step = downsample, dtype=np.float32) + pixel_center, # X-Axis (columns)
np.arange(self.h, step = downsample, dtype=np.float32) + pixel_center, # Y-Axis (rows)
indexing="xy")
camera_dirs = np.stack([(x - self.w * 0.5) / self.focal,
-(y - self.h * 0.5) / self.focal, -np.ones_like(x)],
axis=-1)
directions = (camera_dirs[..., None, :] * camtoworld[None, None, :3, :3]).sum(axis=-1)
origins = np.broadcast_to(camtoworld[None, None, :3, -1], directions.shape)
viewdirs = directions / np.linalg.norm(directions, axis=-1, keepdims=True)
return utils.Rays(origins=origins, directions=directions, viewdirs=viewdirs)
class Blender(Dataset):
"""Blender Dataset."""
def _load_renderings(self, flags, clip_model = None):
"""Load images from disk."""
if flags.render_path:
raise ValueError("render_path cannot be used for the blender dataset.")
cams, images, meta = self.load_files(flags.data_dir, self.split, flags.factor, flags.few_shot)
self.images = np.stack(images, axis=0)
if flags.white_bkgd:
self.images = (self.images[..., :3] * self.images[..., -1:] +
(1. - self.images[..., -1:]))
else:
self.images = self.images[..., :3]
self.h, self.w = self.images.shape[1:3]
self.resolution = self.h * self.w
self.camtoworlds = np.stack(cams, axis=0)
camera_angle_x = float(meta["camera_angle_x"])
self.focal = .5 * self.w / np.tan(.5 * camera_angle_x)
self.n_examples = self.images.shape[0]
self.dtype = flags.clip_output_dtype
if flags.use_semantic_loss and clip_model is not None:
embs = []
for img in self.images:
img = np.expand_dims(np.transpose(img,[2,0,1]), 0)
emb = clip_model.get_image_features(pixel_values = clip_utils.preprocess_for_CLIP(img))
embs.append( emb/np.linalg.norm(emb) )
self.embeddings = np.concatenate(embs, 0)
self.image_idx = np.arange(self.images.shape[0])
np.random.shuffle(self.image_idx)
self.image_idx = self.image_idx.tolist()
@staticmethod
def load_files(data_dir, split, factor, few_shot):
with utils.open_file(path.join(data_dir, "transforms_{}.json".format(split)), "r") as fp:
meta = json.load(fp)
images = []
cams = []
frames = np.arange(len(meta["frames"]))
if few_shot > 0 and split == 'train':
# np.random.seed(0)
# np.random.shuffle(frames)
frames = frames[:few_shot]
# if split == 'train':
# frames = [2,5,10,40,52,53,69,78,83,85,90,94,96,97]
for i in frames:
frame = meta["frames"][i]
fname = os.path.join(data_dir, frame["file_path"] + ".png")
with utils.open_file(fname, "rb") as imgin:
image = np.array(Image.open(imgin)).astype(np.float32) / 255.
if factor == 2:
[halfres_h, halfres_w] = [hw // 2 for hw in image.shape[:2]]
image = cv2.resize(image, (halfres_w, halfres_h),
interpolation=cv2.INTER_AREA)
elif factor == 4:
[halfres_h, halfres_w] = [hw // 4 for hw in image.shape[:2]]
image = cv2.resize(image, (halfres_w, halfres_h),
interpolation=cv2.INTER_AREA)
elif factor > 0:
raise ValueError("Blender dataset only supports factor=0 or 2 or 4, {} "
"set.".format(factor))
cams.append(np.array(frame["transform_matrix"], dtype=np.float32))
images.append(image)
print(f'No. of samples: {len(frames)}')
return cams, images, meta
def _next_train(self):
batch_dict = super(Blender, self)._next_train()
if self.batching == "single_image":
image_index = batch_dict.pop("image_index")
else:
raise NotImplementedError
return batch_dict
def get_clip_data(self):
if len(self.image_idx) == 0:
self.image_idx = np.arange(self.images.shape[0])
np.random.shuffle(self.image_idx)
self.image_idx = self.image_idx.tolist()
image_index = self.image_idx.pop()
batch_dict = {}
batch_dict["embedding"] = self.embeddings[image_index]
src_seed = int(time.time())
src_rng = jax.random.PRNGKey(src_seed)
src_camtoworld = np.array(clip_utils.random_pose(src_rng, (self.near, self.far)))
cx = np.random.randint(320, 480)
cy = np.random.randint(320, 480)
d = 140
random_rays = self.camtoworld_matrix_to_rays(src_camtoworld, downsample = 1)
random_rays = jax.tree_map(lambda x: x[cy-d:cy+d:4,cx-d:cx+d:4], random_rays)
w = random_rays[0].shape[0] - random_rays[0].shape[0]%jax.local_device_count()
random_rays = jax.tree_map(lambda x: x[:w,:w].reshape(-1,3), random_rays)
batch_dict["random_rays"] = utils.shard(random_rays)
if self.dtype == 'float16':
batch_dict = jax.tree_map(lambda x: x.astype(np.float16), batch_dict)
return batch_dict
class LLFF(Dataset):
"""LLFF Dataset."""
def _load_renderings(self, flags):
"""Load images from disk."""
# Load images.
imgdir_suffix = ""
if flags.factor > 0:
imgdir_suffix = "_{}".format(flags.factor)
factor = flags.factor
else:
factor = 1
imgdir = path.join(flags.data_dir, "images" + imgdir_suffix)
if not utils.file_exists(imgdir):
raise ValueError("Image folder {} doesn't exist.".format(imgdir))
imgfiles = [
path.join(imgdir, f)
for f in sorted(utils.listdir(imgdir))
if f.endswith("JPG") or f.endswith("jpg") or f.endswith("png")
]
images = []
for imgfile in imgfiles:
with utils.open_file(imgfile, "rb") as imgin:
image = np.array(Image.open(imgin), dtype=np.float32) / 255.
images.append(image)
images = np.stack(images, axis=-1)
# Load poses and bds.
with utils.open_file(path.join(flags.data_dir, "poses_bounds.npy"),
"rb") as fp:
poses_arr = np.load(fp)
poses = poses_arr[:, :-2].reshape([-1, 3, 5]).transpose([1, 2, 0])
bds = poses_arr[:, -2:].transpose([1, 0])
if poses.shape[-1] != images.shape[-1]:
raise RuntimeError("Mismatch between imgs {} and poses {}".format(
images.shape[-1], poses.shape[-1]))
# Update poses according to downsampling.
poses[:2, 4, :] = np.array(images.shape[:2]).reshape([2, 1])
poses[2, 4, :] = poses[2, 4, :] * 1. / factor
# Correct rotation matrix ordering and move variable dim to axis 0.
poses = np.concatenate(
[poses[:, 1:2, :], -poses[:, 0:1, :], poses[:, 2:, :]], 1)
poses = np.moveaxis(poses, -1, 0).astype(np.float32)
images = np.moveaxis(images, -1, 0)
bds = np.moveaxis(bds, -1, 0).astype(np.float32)
# Rescale according to a default bd factor.
scale = 1. / (bds.min() * .75)
poses[:, :3, 3] *= scale
bds *= scale
# Recenter poses.
poses = self._recenter_poses(poses)
# Generate a spiral/spherical ray path for rendering videos.
if flags.spherify:
poses = self._generate_spherical_poses(poses, bds)
self.spherify = True
else:
self.spherify = False
if not flags.spherify and self.split == "test":
self._generate_spiral_poses(poses, bds)
# Select the split.
i_test = np.arange(images.shape[0])[::flags.llffhold]
i_train = np.array(
[i for i in np.arange(int(images.shape[0])) if i not in i_test])
if self.split == "train":
indices = i_train
else:
indices = i_test
images = images[indices]
poses = poses[indices]
self.images = images
self.camtoworlds = poses[:, :3, :4]
self.focal = poses[0, -1, -1]
self.h, self.w = images.shape[1:3]
self.resolution = self.h * self.w
if flags.render_path:
self.n_examples = self.render_poses.shape[0]
else:
self.n_examples = images.shape[0]
def _generate_rays(self):
"""Generate normalized device coordinate rays for llff."""
if self.split == "test":
n_render_poses = self.render_poses.shape[0]
self.camtoworlds = np.concatenate([self.render_poses, self.camtoworlds],
axis=0)
super()._generate_rays()
if not self.spherify:
ndc_origins, ndc_directions = convert_to_ndc(self.rays.origins,
self.rays.directions,
self.focal, self.w, self.h)
self.rays = utils.Rays(
origins=ndc_origins,
directions=ndc_directions,
viewdirs=self.rays.viewdirs)
# Split poses from the dataset and generated poses
if self.split == "test":
self.camtoworlds = self.camtoworlds[n_render_poses:]
split = [np.split(r, [n_render_poses], 0) for r in self.rays]
split0, split1 = zip(*split)
self.render_rays = utils.Rays(*split0)
self.rays = utils.Rays(*split1)
def _recenter_poses(self, poses):
"""Recenter poses according to the original NeRF code."""
poses_ = poses.copy()
bottom = np.reshape([0, 0, 0, 1.], [1, 4])
c2w = self._poses_avg(poses)
c2w = np.concatenate([c2w[:3, :4], bottom], -2)
bottom = np.tile(np.reshape(bottom, [1, 1, 4]), [poses.shape[0], 1, 1])
poses = np.concatenate([poses[:, :3, :4], bottom], -2)
poses = np.linalg.inv(c2w) @ poses
poses_[:, :3, :4] = poses[:, :3, :4]
poses = poses_
return poses
def _poses_avg(self, poses):
"""Average poses according to the original NeRF code."""
hwf = poses[0, :3, -1:]
center = poses[:, :3, 3].mean(0)
vec2 = self._normalize(poses[:, :3, 2].sum(0))
up = poses[:, :3, 1].sum(0)
c2w = np.concatenate([self._viewmatrix(vec2, up, center), hwf], 1)
return c2w
def _viewmatrix(self, z, up, pos):
"""Construct lookat view matrix."""
vec2 = self._normalize(z)
vec1_avg = up
vec0 = self._normalize(np.cross(vec1_avg, vec2))
vec1 = self._normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, pos], 1)
return m
def _normalize(self, x):
"""Normalization helper function."""
return x / np.linalg.norm(x)
def _generate_spiral_poses(self, poses, bds):
"""Generate a spiral path for rendering."""
c2w = self._poses_avg(poses)
# Get average pose.
up = self._normalize(poses[:, :3, 1].sum(0))
# Find a reasonable "focus depth" for this dataset.
close_depth, inf_depth = bds.min() * .9, bds.max() * 5.
dt = .75
mean_dz = 1. / (((1. - dt) / close_depth + dt / inf_depth))
focal = mean_dz
# Get radii for spiral path.
tt = poses[:, :3, 3]
rads = np.percentile(np.abs(tt), 90, 0)
c2w_path = c2w
n_views = 120
n_rots = 2
# Generate poses for spiral path.
render_poses = []
rads = np.array(list(rads) + [1.])
hwf = c2w_path[:, 4:5]
zrate = .5
for theta in np.linspace(0., 2. * np.pi * n_rots, n_views + 1)[:-1]:
c = np.dot(c2w[:3, :4], (np.array(
[np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.]) * rads))
z = self._normalize(c - np.dot(c2w[:3, :4], np.array([0, 0, -focal, 1.])))
render_poses.append(np.concatenate([self._viewmatrix(z, up, c), hwf], 1))
self.render_poses = np.array(render_poses).astype(np.float32)[:, :3, :4]
def _generate_spherical_poses(self, poses, bds):
"""Generate a 360 degree spherical path for rendering."""
# pylint: disable=g-long-lambda
p34_to_44 = lambda p: np.concatenate([
p,
np.tile(np.reshape(np.eye(4)[-1, :], [1, 1, 4]), [p.shape[0], 1, 1])
], 1)
rays_d = poses[:, :3, 2:3]
rays_o = poses[:, :3, 3:4]
def min_line_dist(rays_o, rays_d):
a_i = np.eye(3) - rays_d * np.transpose(rays_d, [0, 2, 1])
b_i = -a_i @ rays_o
pt_mindist = np.squeeze(-np.linalg.inv(
(np.transpose(a_i, [0, 2, 1]) @ a_i).mean(0)) @ (b_i).mean(0))
return pt_mindist
pt_mindist = min_line_dist(rays_o, rays_d)
center = pt_mindist
up = (poses[:, :3, 3] - center).mean(0)
vec0 = self._normalize(up)
vec1 = self._normalize(np.cross([.1, .2, .3], vec0))
vec2 = self._normalize(np.cross(vec0, vec1))
pos = center
c2w = np.stack([vec1, vec2, vec0, pos], 1)
poses_reset = (
np.linalg.inv(p34_to_44(c2w[None])) @ p34_to_44(poses[:, :3, :4]))
rad = np.sqrt(np.mean(np.sum(np.square(poses_reset[:, :3, 3]), -1)))
sc = 1. / rad
poses_reset[:, :3, 3] *= sc
bds *= sc
rad *= sc
centroid = np.mean(poses_reset[:, :3, 3], 0)
zh = centroid[2]
radcircle = np.sqrt(rad ** 2 - zh ** 2)
new_poses = []
for th in np.linspace(0., 2. * np.pi, 120):
camorigin = np.array([radcircle * np.cos(th), radcircle * np.sin(th), zh])
up = np.array([0, 0, -1.])
vec2 = self._normalize(camorigin)
vec0 = self._normalize(np.cross(vec2, up))
vec1 = self._normalize(np.cross(vec2, vec0))
pos = camorigin
p = np.stack([vec0, vec1, vec2, pos], 1)
new_poses.append(p)
new_poses = np.stack(new_poses, 0)
new_poses = np.concatenate([
new_poses,
np.broadcast_to(poses[0, :3, -1:], new_poses[:, :3, -1:].shape)
], -1)
poses_reset = np.concatenate([
poses_reset[:, :3, :4],
np.broadcast_to(poses[0, :3, -1:], poses_reset[:, :3, -1:].shape)
], -1)
if self.split == "test":
self.render_poses = new_poses[:, :3, :4]
return poses_reset
dataset_dict = {"blender": Blender,
"llff": LLFF}
|