File size: 22,790 Bytes
e8c4ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ec1af
e8c4ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ec1af
 
e8c4ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ec1af
 
 
 
 
 
 
 
e8c4ed3
 
97ec1af
 
 
e8c4ed3
97ec1af
e8c4ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Different datasets implementation plus a general port for all the datasets."""
INTERNAL = False  # pylint: disable=g-statement-before-imports
import json
import os, time
from os import path
import queue
import threading

if not INTERNAL:
    import cv2  # pylint: disable=g-import-not-at-top
import jax
import numpy as np
from PIL import Image

from nerf import utils
from nerf import clip_utils

def get_dataset(split, args, clip_model = None):
    return dataset_dict[args.dataset](split, args, clip_model)


def convert_to_ndc(origins, directions, focal, w, h, near=1.):
    """Convert a set of rays to NDC coordinates."""
    # Shift ray origins to near plane
    t = -(near + origins[..., 2]) / directions[..., 2]
    origins = origins + t[..., None] * directions

    dx, dy, dz = tuple(np.moveaxis(directions, -1, 0))
    ox, oy, oz = tuple(np.moveaxis(origins, -1, 0))

    # Projection
    o0 = -((2 * focal) / w) * (ox / oz)
    o1 = -((2 * focal) / h) * (oy / oz)
    o2 = 1 + 2 * near / oz

    d0 = -((2 * focal) / w) * (dx / dz - ox / oz)
    d1 = -((2 * focal) / h) * (dy / dz - oy / oz)
    d2 = -2 * near / oz

    origins = np.stack([o0, o1, o2], -1)
    directions = np.stack([d0, d1, d2], -1)
    return origins, directions


class Dataset(threading.Thread):
    """Dataset Base Class."""

    def __init__(self, split, flags, clip_model):
        super(Dataset, self).__init__()
        self.queue = queue.Queue(3)  # Set prefetch buffer to 3 batches.
        self.daemon = True
        self.use_pixel_centers = flags.use_pixel_centers
        self.split = split

        if split == "train":
            self._train_init(flags, clip_model)
        elif split == "test":
            self._test_init(flags)
        else:
            raise ValueError(
                "the split argument should be either \"train\" or \"test\", set"
                "to {} here.".format(split))
        self.batch_size = flags.batch_size // jax.process_count()
        self.batching = flags.batching
        self.render_path = flags.render_path
        self.far = flags.far
        self.near = flags.near
        self.max_steps = flags.max_steps
        self.start()

    def __iter__(self):
        return self

    def __next__(self):
        """Get the next training batch or test example.

        Returns:
          batch: dict, has "pixels" and "rays".
        """
        x = self.queue.get()
        if self.split == "train":
            return utils.shard(x)
        else:
            return utils.to_device(x)

    def peek(self):
        """Peek at the next training batch or test example without dequeuing it.

        Returns:
          batch: dict, has "pixels" and "rays".
        """
        x = self.queue.queue[0].copy()  # Make a copy of the front of the queue.
        if self.split == "train":
            return utils.shard(x)
        else:
            return utils.to_device(x)

    def run(self):
        if self.split == "train":
            next_func = self._next_train
        else:
            next_func = self._next_test
        while True:
            self.queue.put(next_func())

    @property
    def size(self):
        return self.n_examples

    def _train_init(self, flags, clip_model):
        """Initialize training."""
        self._load_renderings(flags, clip_model)
        self._generate_rays()

        if flags.batching == "all_images":
            # flatten the ray and image dimension together.
            self.images = self.images.reshape([-1, 3])
            self.rays = utils.namedtuple_map(lambda r: r.reshape([-1, r.shape[-1]]),
                                             self.rays)
        elif flags.batching == "single_image":
            self.images = self.images.reshape([-1, self.resolution, 3])
            self.rays = utils.namedtuple_map(
                lambda r: r.reshape([-1, self.resolution, r.shape[-1]]), self.rays)
        else:
            raise NotImplementedError(
                f"{flags.batching} batching strategy is not implemented.")

    def _test_init(self, flags):
        self._load_renderings(flags, clip_model = None)
        self._generate_rays()
        self.it = 0

    def _next_train(self):
        """Sample next training batch."""

        if self.batching == "all_images":
            ray_indices = np.random.randint(0, self.rays[0].shape[0],
                                            (self.batch_size,))
            batch_pixels = self.images[ray_indices]
            batch_rays = utils.namedtuple_map(lambda r: r[ray_indices], self.rays)
            raise NotImplementedError("image_index not implemented for batching=all_images")

        elif self.batching == "single_image":
            image_index = np.random.randint(0, self.n_examples, ())
            ray_indices = np.random.randint(0, self.rays[0][0].shape[0],
                                            (self.batch_size,))
            batch_pixels = self.images[image_index][ray_indices]
            batch_rays = utils.namedtuple_map(lambda r: r[image_index][ray_indices],
                                              self.rays)
        else:
            raise NotImplementedError(
                f"{self.batching} batching strategy is not implemented.")
        return {"pixels": batch_pixels, "rays": batch_rays, "image_index": image_index}

    def _next_test(self):
        """Sample next test example."""
        idx = self.it
        self.it = (self.it + 1) % self.n_examples

        if self.render_path:
            return {"rays": utils.namedtuple_map(lambda r: r[idx], self.render_rays)}
        else:
            return {"pixels": self.images[idx],
                    "rays": utils.namedtuple_map(lambda r: r[idx], self.rays),
                    "image_index": idx}

    # TODO(bydeng): Swap this function with a more flexible camera model.
    def _generate_rays(self):
        """Generating rays for all images."""
        pixel_center = 0.5 if self.use_pixel_centers else 0.0
        x, y = np.meshgrid(  # pylint: disable=unbalanced-tuple-unpacking
            np.arange(self.w, dtype=np.float32) + pixel_center,  # X-Axis (columns)
            np.arange(self.h, dtype=np.float32) + pixel_center,  # Y-Axis (rows)
            indexing="xy")
        camera_dirs = np.stack([(x - self.w * 0.5) / self.focal,
                                -(y - self.h * 0.5) / self.focal, -np.ones_like(x)],
                               axis=-1)
        directions = ((camera_dirs[None, ..., None, :] *
                       self.camtoworlds[:, None, None, :3, :3]).sum(axis=-1))
        origins = np.broadcast_to(self.camtoworlds[:, None, None, :3, -1],
                                  directions.shape)
        viewdirs = directions / np.linalg.norm(directions, axis=-1, keepdims=True)
        self.rays = utils.Rays(
            origins=origins, directions=directions, viewdirs=viewdirs)

    def camtoworld_matrix_to_rays(self, camtoworld, downsample = 1):
        """ render one instance of rays given a camera to world matrix (4, 4) """
        pixel_center = 0.5 if self.use_pixel_centers else 0.0
        # TODO @Alex: apply mesh downsampling here
        x, y = np.meshgrid(  # pylint: disable=unbalanced-tuple-unpacking
            np.arange(self.w, step = downsample, dtype=np.float32) + pixel_center,  # X-Axis (columns)
            np.arange(self.h, step = downsample, dtype=np.float32) + pixel_center,  # Y-Axis (rows)
            indexing="xy")
        camera_dirs = np.stack([(x - self.w * 0.5) / self.focal,
                                -(y - self.h * 0.5) / self.focal, -np.ones_like(x)],
                               axis=-1)
        directions = (camera_dirs[..., None, :] * camtoworld[None, None, :3, :3]).sum(axis=-1)
        origins = np.broadcast_to(camtoworld[None, None, :3, -1], directions.shape)
        viewdirs = directions / np.linalg.norm(directions, axis=-1, keepdims=True)
        return utils.Rays(origins=origins, directions=directions, viewdirs=viewdirs)

class Blender(Dataset):
    """Blender Dataset."""

    def _load_renderings(self, flags, clip_model = None):
        """Load images from disk."""
        if flags.render_path:
            raise ValueError("render_path cannot be used for the blender dataset.")
        cams, images, meta = self.load_files(flags.data_dir, self.split, flags.factor, flags.few_shot)

        self.images = np.stack(images, axis=0)
        if flags.white_bkgd:
            self.images = (self.images[..., :3] * self.images[..., -1:] +
                           (1. - self.images[..., -1:]))
        else:
            self.images = self.images[..., :3]
        self.h, self.w = self.images.shape[1:3]
        self.resolution = self.h * self.w
        self.camtoworlds = np.stack(cams, axis=0)
        camera_angle_x = float(meta["camera_angle_x"])
        self.focal = .5 * self.w / np.tan(.5 * camera_angle_x)
        self.n_examples = self.images.shape[0]
        self.dtype = flags.clip_output_dtype

        if flags.use_semantic_loss and clip_model is not None:
            embs = []
            for img in self.images:
                img = np.expand_dims(np.transpose(img,[2,0,1]), 0)
                emb = clip_model.get_image_features(pixel_values = clip_utils.preprocess_for_CLIP(img))
                embs.append( emb/np.linalg.norm(emb) )
            self.embeddings = np.concatenate(embs, 0)
        
            self.image_idx = np.arange(self.images.shape[0])
            np.random.shuffle(self.image_idx)
            self.image_idx = self.image_idx.tolist()

    @staticmethod
    def load_files(data_dir, split, factor, few_shot):
        with utils.open_file(path.join(data_dir, "transforms_{}.json".format(split)), "r") as fp:
            meta = json.load(fp)
        images = []
        cams = []

        frames = np.arange(len(meta["frames"]))
        if few_shot > 0 and split == 'train':
            # np.random.seed(0)
            # np.random.shuffle(frames)
            frames = frames[:few_shot]

        # if split == 'train':
        #     frames = [2,5,10,40,52,53,69,78,83,85,90,94,96,97]
        
        for i in frames:
            frame = meta["frames"][i]
            fname = os.path.join(data_dir, frame["file_path"] + ".png")
            with utils.open_file(fname, "rb") as imgin:
                image = np.array(Image.open(imgin)).astype(np.float32) / 255.
                if factor == 2:
                    [halfres_h, halfres_w] = [hw // 2 for hw in image.shape[:2]]
                    image = cv2.resize(image, (halfres_w, halfres_h),
                                       interpolation=cv2.INTER_AREA)
                elif factor == 4:
                    [halfres_h, halfres_w] = [hw // 4 for hw in image.shape[:2]]
                    image = cv2.resize(image, (halfres_w, halfres_h),
                                       interpolation=cv2.INTER_AREA)
                elif factor > 0:
                    raise ValueError("Blender dataset only supports factor=0 or 2 or 4, {} "
                                     "set.".format(factor))
            cams.append(np.array(frame["transform_matrix"], dtype=np.float32))
            images.append(image)

        print(f'No. of samples: {len(frames)}')
        return cams, images, meta

    def _next_train(self):
        batch_dict = super(Blender, self)._next_train()
        if self.batching == "single_image":
            image_index = batch_dict.pop("image_index")
        else:
            raise NotImplementedError
        return batch_dict

    def get_clip_data(self):
        if len(self.image_idx) == 0:
            self.image_idx = np.arange(self.images.shape[0])
            np.random.shuffle(self.image_idx)
            self.image_idx = self.image_idx.tolist()
        image_index = self.image_idx.pop()

        batch_dict = {}
        batch_dict["embedding"] = self.embeddings[image_index]

        src_seed = int(time.time())
        src_rng = jax.random.PRNGKey(src_seed)
        src_camtoworld = np.array(clip_utils.random_pose(src_rng, (self.near, self.far)))

        cx = np.random.randint(320, 480)
        cy = np.random.randint(320, 480)
        d = 140
        
        random_rays = self.camtoworld_matrix_to_rays(src_camtoworld, downsample = 1)
        random_rays = jax.tree_map(lambda x: x[cy-d:cy+d:4,cx-d:cx+d:4], random_rays)

        w = random_rays[0].shape[0] - random_rays[0].shape[0]%jax.local_device_count()
        random_rays = jax.tree_map(lambda x: x[:w,:w].reshape(-1,3), random_rays)
        batch_dict["random_rays"] = utils.shard(random_rays)
        if self.dtype == 'float16':
            batch_dict = jax.tree_map(lambda x: x.astype(np.float16), batch_dict)
        return batch_dict
    
class LLFF(Dataset):
    """LLFF Dataset."""

    def _load_renderings(self, flags):
        """Load images from disk."""
        # Load images.
        imgdir_suffix = ""
        if flags.factor > 0:
            imgdir_suffix = "_{}".format(flags.factor)
            factor = flags.factor
        else:
            factor = 1
        imgdir = path.join(flags.data_dir, "images" + imgdir_suffix)
        if not utils.file_exists(imgdir):
            raise ValueError("Image folder {} doesn't exist.".format(imgdir))
        imgfiles = [
            path.join(imgdir, f)
            for f in sorted(utils.listdir(imgdir))
            if f.endswith("JPG") or f.endswith("jpg") or f.endswith("png")
        ]
        images = []
        for imgfile in imgfiles:
            with utils.open_file(imgfile, "rb") as imgin:
                image = np.array(Image.open(imgin), dtype=np.float32) / 255.
                images.append(image)
        images = np.stack(images, axis=-1)

        # Load poses and bds.
        with utils.open_file(path.join(flags.data_dir, "poses_bounds.npy"),
                             "rb") as fp:
            poses_arr = np.load(fp)
        poses = poses_arr[:, :-2].reshape([-1, 3, 5]).transpose([1, 2, 0])
        bds = poses_arr[:, -2:].transpose([1, 0])
        if poses.shape[-1] != images.shape[-1]:
            raise RuntimeError("Mismatch between imgs {} and poses {}".format(
                images.shape[-1], poses.shape[-1]))

        # Update poses according to downsampling.
        poses[:2, 4, :] = np.array(images.shape[:2]).reshape([2, 1])
        poses[2, 4, :] = poses[2, 4, :] * 1. / factor

        # Correct rotation matrix ordering and move variable dim to axis 0.
        poses = np.concatenate(
            [poses[:, 1:2, :], -poses[:, 0:1, :], poses[:, 2:, :]], 1)
        poses = np.moveaxis(poses, -1, 0).astype(np.float32)
        images = np.moveaxis(images, -1, 0)
        bds = np.moveaxis(bds, -1, 0).astype(np.float32)

        # Rescale according to a default bd factor.
        scale = 1. / (bds.min() * .75)
        poses[:, :3, 3] *= scale
        bds *= scale

        # Recenter poses.
        poses = self._recenter_poses(poses)

        # Generate a spiral/spherical ray path for rendering videos.
        if flags.spherify:
            poses = self._generate_spherical_poses(poses, bds)
            self.spherify = True
        else:
            self.spherify = False
        if not flags.spherify and self.split == "test":
            self._generate_spiral_poses(poses, bds)

        # Select the split.
        i_test = np.arange(images.shape[0])[::flags.llffhold]
        i_train = np.array(
            [i for i in np.arange(int(images.shape[0])) if i not in i_test])
        if self.split == "train":
            indices = i_train
        else:
            indices = i_test
        images = images[indices]
        poses = poses[indices]

        self.images = images
        self.camtoworlds = poses[:, :3, :4]
        self.focal = poses[0, -1, -1]
        self.h, self.w = images.shape[1:3]
        self.resolution = self.h * self.w
        if flags.render_path:
            self.n_examples = self.render_poses.shape[0]
        else:
            self.n_examples = images.shape[0]

    def _generate_rays(self):
        """Generate normalized device coordinate rays for llff."""
        if self.split == "test":
            n_render_poses = self.render_poses.shape[0]
            self.camtoworlds = np.concatenate([self.render_poses, self.camtoworlds],
                                              axis=0)

        super()._generate_rays()

        if not self.spherify:
            ndc_origins, ndc_directions = convert_to_ndc(self.rays.origins,
                                                         self.rays.directions,
                                                         self.focal, self.w, self.h)
            self.rays = utils.Rays(
                origins=ndc_origins,
                directions=ndc_directions,
                viewdirs=self.rays.viewdirs)

        # Split poses from the dataset and generated poses
        if self.split == "test":
            self.camtoworlds = self.camtoworlds[n_render_poses:]
            split = [np.split(r, [n_render_poses], 0) for r in self.rays]
            split0, split1 = zip(*split)
            self.render_rays = utils.Rays(*split0)
            self.rays = utils.Rays(*split1)

    def _recenter_poses(self, poses):
        """Recenter poses according to the original NeRF code."""
        poses_ = poses.copy()
        bottom = np.reshape([0, 0, 0, 1.], [1, 4])
        c2w = self._poses_avg(poses)
        c2w = np.concatenate([c2w[:3, :4], bottom], -2)
        bottom = np.tile(np.reshape(bottom, [1, 1, 4]), [poses.shape[0], 1, 1])
        poses = np.concatenate([poses[:, :3, :4], bottom], -2)
        poses = np.linalg.inv(c2w) @ poses
        poses_[:, :3, :4] = poses[:, :3, :4]
        poses = poses_
        return poses

    def _poses_avg(self, poses):
        """Average poses according to the original NeRF code."""
        hwf = poses[0, :3, -1:]
        center = poses[:, :3, 3].mean(0)
        vec2 = self._normalize(poses[:, :3, 2].sum(0))
        up = poses[:, :3, 1].sum(0)
        c2w = np.concatenate([self._viewmatrix(vec2, up, center), hwf], 1)
        return c2w

    def _viewmatrix(self, z, up, pos):
        """Construct lookat view matrix."""
        vec2 = self._normalize(z)
        vec1_avg = up
        vec0 = self._normalize(np.cross(vec1_avg, vec2))
        vec1 = self._normalize(np.cross(vec2, vec0))
        m = np.stack([vec0, vec1, vec2, pos], 1)
        return m

    def _normalize(self, x):
        """Normalization helper function."""
        return x / np.linalg.norm(x)

    def _generate_spiral_poses(self, poses, bds):
        """Generate a spiral path for rendering."""
        c2w = self._poses_avg(poses)
        # Get average pose.
        up = self._normalize(poses[:, :3, 1].sum(0))
        # Find a reasonable "focus depth" for this dataset.
        close_depth, inf_depth = bds.min() * .9, bds.max() * 5.
        dt = .75
        mean_dz = 1. / (((1. - dt) / close_depth + dt / inf_depth))
        focal = mean_dz
        # Get radii for spiral path.
        tt = poses[:, :3, 3]
        rads = np.percentile(np.abs(tt), 90, 0)
        c2w_path = c2w
        n_views = 120
        n_rots = 2
        # Generate poses for spiral path.
        render_poses = []
        rads = np.array(list(rads) + [1.])
        hwf = c2w_path[:, 4:5]
        zrate = .5
        for theta in np.linspace(0., 2. * np.pi * n_rots, n_views + 1)[:-1]:
            c = np.dot(c2w[:3, :4], (np.array(
                [np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.]) * rads))
            z = self._normalize(c - np.dot(c2w[:3, :4], np.array([0, 0, -focal, 1.])))
            render_poses.append(np.concatenate([self._viewmatrix(z, up, c), hwf], 1))
        self.render_poses = np.array(render_poses).astype(np.float32)[:, :3, :4]

    def _generate_spherical_poses(self, poses, bds):
        """Generate a 360 degree spherical path for rendering."""
        # pylint: disable=g-long-lambda
        p34_to_44 = lambda p: np.concatenate([
            p,
            np.tile(np.reshape(np.eye(4)[-1, :], [1, 1, 4]), [p.shape[0], 1, 1])
        ], 1)
        rays_d = poses[:, :3, 2:3]
        rays_o = poses[:, :3, 3:4]

        def min_line_dist(rays_o, rays_d):
            a_i = np.eye(3) - rays_d * np.transpose(rays_d, [0, 2, 1])
            b_i = -a_i @ rays_o
            pt_mindist = np.squeeze(-np.linalg.inv(
                (np.transpose(a_i, [0, 2, 1]) @ a_i).mean(0)) @ (b_i).mean(0))
            return pt_mindist

        pt_mindist = min_line_dist(rays_o, rays_d)
        center = pt_mindist
        up = (poses[:, :3, 3] - center).mean(0)
        vec0 = self._normalize(up)
        vec1 = self._normalize(np.cross([.1, .2, .3], vec0))
        vec2 = self._normalize(np.cross(vec0, vec1))
        pos = center
        c2w = np.stack([vec1, vec2, vec0, pos], 1)
        poses_reset = (
                np.linalg.inv(p34_to_44(c2w[None])) @ p34_to_44(poses[:, :3, :4]))
        rad = np.sqrt(np.mean(np.sum(np.square(poses_reset[:, :3, 3]), -1)))
        sc = 1. / rad
        poses_reset[:, :3, 3] *= sc
        bds *= sc
        rad *= sc
        centroid = np.mean(poses_reset[:, :3, 3], 0)
        zh = centroid[2]
        radcircle = np.sqrt(rad ** 2 - zh ** 2)
        new_poses = []

        for th in np.linspace(0., 2. * np.pi, 120):
            camorigin = np.array([radcircle * np.cos(th), radcircle * np.sin(th), zh])
            up = np.array([0, 0, -1.])
            vec2 = self._normalize(camorigin)
            vec0 = self._normalize(np.cross(vec2, up))
            vec1 = self._normalize(np.cross(vec2, vec0))
            pos = camorigin
            p = np.stack([vec0, vec1, vec2, pos], 1)
            new_poses.append(p)

        new_poses = np.stack(new_poses, 0)
        new_poses = np.concatenate([
            new_poses,
            np.broadcast_to(poses[0, :3, -1:], new_poses[:, :3, -1:].shape)
        ], -1)
        poses_reset = np.concatenate([
            poses_reset[:, :3, :4],
            np.broadcast_to(poses[0, :3, -1:], poses_reset[:, :3, -1:].shape)
        ], -1)
        if self.split == "test":
            self.render_poses = new_poses[:, :3, :4]
        return poses_reset


dataset_dict = {"blender": Blender,
                "llff": LLFF}