File size: 13,122 Bytes
4de2b91
00d327a
e8c4ed3
2809e52
6bdd205
3c9f729
 
 
 
 
effa24f
 
2809e52
3c9f729
4de2b91
effa24f
80c3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9f729
 
87e016b
 
3c9f729
c00ce89
3c9f729
 
87e016b
 
00d327a
 
 
 
 
3c9f729
87e016b
2809e52
80c3093
ac55c81
80c3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9f729
80c3093
 
 
 
3c9f729
 
 
 
df5c49a
3c9f729
2809e52
 
 
3c9f729
2809e52
 
 
 
 
 
 
 
 
 
 
 
80c3093
 
 
 
 
 
ac55c81
80c3093
e8c4ed3
2809e52
e1b3138
3c9f729
 
 
fc25688
2809e52
afc4bea
b3ecd8f
2809e52
3c9f729
2809e52
3c9f729
 
 
2809e52
3c9f729
 
e37da91
2809e52
3c9f729
b3ecd8f
 
 
 
 
2809e52
 
b3ecd8f
 
 
 
96bb15d
e37da91
2809e52
 
effa24f
4de2b91
 
 
2809e52
 
 
 
2b460af
2809e52
f87e0cc
 
 
 
 
 
 
 
 
e3b6615
f87e0cc
 
 
 
 
 
 
 
 
 
 
2809e52
 
80c3093
 
 
 
 
 
 
 
 
 
 
3c9f729
80c3093
 
 
 
 
 
 
 
 
 
 
2809e52
 
 
 
 
 
 
 
 
3c9f729
2809e52
 
96bb15d
2809e52
3c9f729
 
febb4b8
3c9f729
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation
[![Open in Streamlit](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://huggingface.co/spaces/flax-community/DietNerf-Demo) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1etYeMTntw5mh3FvJv4Ubb7XUoTtt5J9G?usp=sharing)

<p align="center"><img width="450" alt="스크린샷 2021-07-04 오후 4 11 51" src="https://user-images.githubusercontent.com/77657524/126361638-4aad58e8-4efb-4fc5-bf78-f53d03799e1e.png"></p>

Welcome to Putting NeRF on a Diet Project! 
This project is the Pytorch, JAX/Flax based code implementation of this paper [Putting NeRF on a Diet : Ajay Jain, Matthew Tancik, Pieter Abbeel, Arxiv : https://arxiv.org/abs/2104.00677] 
The model generates the novel view synthesis redering (NeRF: Neural Radiances Field) with Fewshot learning scheme.
The semantic loss use the pre-trained CLIP Vision Transformer embedding. This information can give a 2D supervision for 3D.
The Diet NeRF result outperforms the original NeRF in 3D reconstruction and neural rendering with only few images. 


##  🤗 Hugging Face Hub Repo URL:
We will also upload our project on the Hugging Face Hub Repository Also. 
[https://huggingface.co/flax-community/putting-nerf-on-a-diet/](https://huggingface.co/flax-community/putting-nerf-on-a-diet/)

Our JAX/Flax implementation currently supports:

<table class="tg">
<thead>
  <tr>
    <th class="tg-0lax"><span style="font-weight:bold">Platform</span></th>
    <th class="tg-0lax" colspan="2"><span style="font-weight:bold">Single-Host GPU</span></th>
    <th class="tg-0lax" colspan="2"><span style="font-weight:bold">Multi-Device TPU</span></th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-0lax"><span style="font-weight:bold">Type</span></td>
    <td class="tg-0lax">Single-Device</td>
    <td class="tg-0lax">Multi-Device</td>
    <td class="tg-0lax">Single-Host</td>
    <td class="tg-0lax">Multi-Host</td>
  </tr>
  <tr>
    <td class="tg-0lax"><span style="font-weight:bold">Training</span></td>
    <td class="tg-0lax"><img src="http://storage.googleapis.com/gresearch/jaxnerf/check.png" alt="Supported" width=18px height=18px></td>
    <td class="tg-0lax"><img src="http://storage.googleapis.com/gresearch/jaxnerf/check.png" alt="Supported" width=18px height=18px></td>
    <td class="tg-0lax"><img src="http://storage.googleapis.com/gresearch/jaxnerf/check.png" alt="Supported" width=18px height=18px></td>
    <td class="tg-0lax"><img src="http://storage.googleapis.com/gresearch/jaxnerf/check.png" alt="Supported" width=18px height=18px></td>
  </tr>
  <tr>
    <td class="tg-0lax"><span style="font-weight:bold">Evaluation</span></td>
    <td class="tg-0lax"><img src="http://storage.googleapis.com/gresearch/jaxnerf/check.png" alt="Supported" width=18px height=18px></td>
    <td class="tg-0lax"><img src="http://storage.googleapis.com/gresearch/jaxnerf/check.png" alt="Supported" width=18px height=18px></td>
    <td class="tg-0lax"><img src="http://storage.googleapis.com/gresearch/jaxnerf/check.png" alt="Supported" width=18px height=18px></td>
    <td class="tg-0lax"><img src="http://storage.googleapis.com/gresearch/jaxnerf/check.png" alt="Supported" width=18px height=18px></td>
  </tr>
</tbody>
</table>

## 🤩 Demo

- Streamlit Space Demo

You can check our Streamlit Space demo on following site !
With any input camera pose, we can render the novel view synthesis.
[https://huggingface.co/spaces/flax-community/DietNerf-Demo](https://huggingface.co/spaces/flax-community/DietNerf-Demo)

- Colab Demo

Moreover, we prapare the colab ipython notebook for you.
You need colab pro account for running our model on the colab(For memory issue)
[https://colab.research.google.com/drive/1etYeMTntw5mh3FvJv4Ubb7XUoTtt5J9G?usp=sharing
](https://colab.research.google.com/drive/1etYeMTntw5mh3FvJv4Ubb7XUoTtt5J9G?usp=sharing
)


## 💻 Installation

```bash
# Clone the repo
svn export https://github.com/google-research/google-research/trunk/jaxnerf
# Create a conda environment, note you can use python 3.6-3.8 as
# one of the dependencies (TensorFlow) hasn't supported python 3.9 yet.
conda create --name jaxnerf python=3.6.12; conda activate jaxnerf
# Prepare pip
conda install pip; pip install --upgrade pip
# Install requirements
pip install -r jaxnerf/requirements.txt
# [Optional] Install GPU and TPU support for Jax
# Remember to change cuda101 to your CUDA version, e.g. cuda110 for CUDA 11.0.
pip install --upgrade jax jaxlib==0.1.57+cuda101 -f https://storage.googleapis.com/jax-releases/jax_releases.html
# install flax and flax-transformer
pip install flax transformer[flax]
```

## ⚽ Dataset 
Download the datasets from the [NeRF official Google Drive](https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1).
Please download the `nerf_synthetic.zip` and unzip them
in the place you like. Let's assume they are placed under `/tmp/jaxnerf/data/`.


## 💖 Methods

You can check more detail explaination about DietNeRF on following **Notion Report**
* 👉👉 VEEEERY Detail DietNeRF Explaination Docs : https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745

<p align="center"><img width="400" alt="스크린샷 2021-07-04 오후 4 11 51" src="https://user-images.githubusercontent.com/77657524/124376591-b312b780-dce2-11eb-80ad-9129d6f5eedb.png"></p> 

Based on the principle
that “a bulldozer is a bulldozer from any perspective”, Our proposed DietNeRF supervises the radiance field from arbitrary poses
(DietNeRF cameras). This is possible because we compute a semantic consistency loss in a feature space capturing high-level
scene attributes, not in pixel space. We extract semantic representations of renderings using the CLIP Vision Transformer, then
maximize similarity with representations of ground-truth views. In
effect, we use prior knowledge about scene semantics learned by
single-view 2D image encoders to constrain a 3D representation.

You can check detail information on the author's paper. Also, you can check the CLIP based semantic loss structure on the following image.
<p align="center"><img width="600" alt="스크린샷 2021-07-04 오후 4 11 51" src="https://user-images.githubusercontent.com/77657524/126386709-a4ce7ff8-2a68-442f-b4ed-26971fb90e51.png"></p>

Our code used JAX/FLAX framework for implementation. So that it can achieve much speed up than other NeRF code. Moreover, we implemented multiple GPU distribution ray code. it helps much smaller training time. At last, our code used hugging face, transformer,  CLIP model library. 

## 🤟 How to use
```
python -m train \
  --data_dir=/PATH/TO/YOUR/SCENE/DATA \ % e.g., nerf_synthetic/lego
  --train_dir=/PATH/TO/THE/PLACE/YOU/WANT/TO/SAVE/CHECKPOINTS \
  --config=configs/CONFIG_YOU_LIKE
```
You can toggle the semantic loss by “use_semantic_loss” in configuration files.

## 💎 Expriment Result

### ❗ Rendered Rendering images by 8-shot learned Diet-NeRF

DietNeRF has a strong capacity to generalise on novel and challenging views with EXTREMELY SMALL TRAINING SAMPLES!

### CHAIR / HOTDOG / DRUM / LEGO / MIC

<img alt="" src="https://user-images.githubusercontent.com/77657524/126913354-57c12c14-d550-4061-b745-f025f73b369b.png" width="250"/><img alt="" src="https://user-images.githubusercontent.com/77657524/126913363-8e0d9192-d02e-43c8-b29f-df54e09fab28.png" width="250"/></td><td><img alt="" src="https://user-images.githubusercontent.com/77657524/126913383-0a8b50df-da81-46b2-baac-2de5f20a7621.png" width="250"/>
<img alt="" src="https://user-images.githubusercontent.com/77657524/126913553-19ebd2f2-c5f1-4332-a253-950e41cb5229.gif" width="300"/><img alt="" src="https://user-images.githubusercontent.com/77657524/126913559-dfce4b88-84a8-4a0a-91eb-ed12716ab328.gif" width="300"/>

### ❗ Rendered GIF by occluded 14-shot learned NeRF and Diet-NeRF

We made aritificial occulusion on the right side of image (Only picked left side training poses).
The reconstruction quality can be compared with this experiment.
Diet NeRF shows better quailty than Original NeRF when It is occulused.

#### Training poses
<img width="1400" src="https://user-images.githubusercontent.com/26036843/126111980-4f332c87-a7f0-42e0-a355-8e77621bbca4.png">


#### LEGO
[DietNeRF]
<img alt="" src="https://user-images.githubusercontent.com/77657524/126913404-800777f8-8f88-451a-92de-3dda25075206.gif" width="300"/>
[NeRF]
<img alt="" src="https://user-images.githubusercontent.com/77657524/126913412-f10dfb3e-e918-4ff4-aa2c-63529fec91d8.gif" width="300"/>


#### SHIP
[DietNeRF]
<img alt="" src="https://user-images.githubusercontent.com/77657524/126913430-0014a904-6ca1-4a7b-9cd6-6f73b36552fb.gif" width="300"/>
[NeRF]
<img alt="" src="https://user-images.githubusercontent.com/77657524/126913439-2e3128ef-c7ef-4c21-8261-6e3b8fe51f86.gif" width="300"/>


## 👨‍👧‍👦 Our Teams


| Teams            | Members                                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Managing | [Stella Yang](https://github.com/codestella) To Watch Our Project Progress, Please Check [Our Project Notion](https://www.notion.so/Putting-NeRF-on-a-Diet-e0caecea0c2b40c3996c83205baf870d) |
| NeRF Team        | [Stella Yang](https://github.com/codestella), [Alex Lau](https://github.com/riven314), [Seunghyun Lee](https://github.com/sseung0703), [Hyunkyu Kim](https://github.com/minus31),  [Haswanth Aekula](https://github.com/hassiahk), [JaeYoung Chung](https://github.com/robot0321)          |
| CLIP Team        | [Seunghyun Lee](https://github.com/sseung0703), [Sasikanth Kotti](https://github.com/ksasi), [Khali Sifullah](https://github.com/khalidsaifullaah) , [Sunghyun Kim](https://github.com/MrBananaHuman)                                |
| Cloud TPU Team   | [Alex Lau](https://github.com/riven314), [Aswin Pyakurel](https://github.com/masapasa) , [JaeYoung Chung](https://github.com/robot0321),  [Sunghyun Kim](https://github.com/MrBananaHuman)                                                    |

* Extremely Don't Sleep Contributors 🤣 :  [Seunghyun Lee](https://github.com/sseung0703), [Alex Lau](https://github.com/riven314), [Stella Yang](https://github.com/codestella), [Haswanth Aekula](https://github.com/hassiahk)

# 😎 What we improved from original JAX-NeRF : Innovation
 - Neural rendering with fewshot images
 - Hugging face CLIP based semantic loss loop
 - You can choose coarse mlp / coarse + fine mlp training
   (coarse + fine is on the `main` branch / coarse is on the `coarse_only` branch)
    * coarse + fine : shows good geometric reconstruction
    * coarse : shows good PSNR/SSIM result  
 - Make Video/GIF rendering result, `--generate_gif_only` arg can run fast rendering GIF.
 - Cleaning / refactoring the code 
 - Made multiple models / colab / space for Nice demo

# 💞 Social Impact

 - Game Industry
 - Augmented Reality Industry
 - Virtual Reality Industry
 - Graphics Industry
 - Online shopping
 - Metaverse
 - Digital Twin
 - Mapping / SLAM

## 🌱 References
This project is based on “JAX-NeRF”.
```
@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}
```

This project is based on “Putting NeRF on a Diet”.
```
@misc{jain2021putting,
      title={Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis}, 
      author={Ajay Jain and Matthew Tancik and Pieter Abbeel},
      year={2021},
      eprint={2104.00677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

## 🔑 License
[Apache License 2.0](https://github.com/codestella/putting-nerf-on-a-diet/blob/main/LICENSE)

## ❤️ Special Thanks 


Our Project is started in the HuggingFace X GoogleAI (JAX) Community Week Event.
https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104

Thank you for our mentor Suraj and organizers in JAX/Flax Community Week! 
Our team grows up with this community learning experience. It was wonderful time!

<img width="250" alt="스크린샷 2021-07-04 오후 4 11 51" src="https://user-images.githubusercontent.com/77657524/126369170-5664076c-ac99-4157-bc53-b91dfb7ed7e1.jpeg">

Common Computer AI(https://comcom.ai/ko/) sponsored the multiple V100 GPUs for our project!
Thank you so much for your support!
<img width="250" alt="스크린샷" src="https://user-images.githubusercontent.com/77657524/126914984-d959be06-19f4-4228-8d3a-a855396b2c3f.jpeg">