File size: 14,758 Bytes
e8c4ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Training script for Nerf."""
import functools
import gc
import time
from absl import app
from absl import flags
import flax
from flax.metrics import tensorboard
from flax.training import checkpoints
import jax
from jax import config
from jax import random
import jax.numpy as jnp
import numpy as np
# import wandb
from tqdm import tqdm
from nerf import datasets
from nerf import models
from nerf import utils
from nerf import clip_utils
FLAGS = flags.FLAGS
utils.define_flags()
config.parse_flags_with_absl()
# set up TPU for colab
import os
if "COLAB_TPU_ADDR" in os.environ:
import jax.tools.colab_tpu
jax.tools.colab_tpu.setup_tpu()
print(f"detected device: {jax.local_devices()}")
def train_step(model, clip_model, rng, state, batch, lr, step, K,):
# TODO make clip_grad input enable
"""One optimization step.
Args:
model: The linen model.
rng: jnp.ndarray, random number generator.
state: utils.TrainState, state of the model/optimizer.
batch: dict, a mini-batch of data for training.
lr: float, real-time learning rate.
Returns:
new_state: utils.TrainState, new training state.
stats: list. [(loss, psnr), (loss_coarse, psnr_coarse)].
rng: jnp.ndarray, updated random number generator.
"""
rng, key_0, key_1 = random.split(rng, 3)
def loss_fn(variables):
rays = batch["rays"]
ret = model.apply(variables, key_0, key_1, rays, FLAGS.randomized)
if len(ret) not in (1, 2):
raise ValueError(
"ret should contain either 1 set of output (coarse only), or 2 sets"
"of output (coarse as ret[0] and fine as ret[1]).")
# The main prediction is always at the end of the ret list.
rgb, unused_disp, unused_acc = ret[-1]
loss = ((rgb - batch["pixels"][Ellipsis, :3]) ** 2).mean()
psnr = utils.compute_psnr(loss)
if len(ret) > 1:
# If there are both coarse and fine predictions, we compute the loss for
# the coarse prediction (ret[0]) as well.
rgb_c, unused_disp_c, unused_acc_c = ret[0]
loss_c = ((rgb_c - batch["pixels"][Ellipsis, :3]) ** 2).mean()
psnr_c = utils.compute_psnr(loss_c)
else:
loss_c = 0.
psnr_c = 0.
def tree_sum_fn(fn):
return jax.tree_util.tree_reduce(lambda x, y: x + fn(y),
variables, initializer=0)
weight_l2 = (tree_sum_fn(lambda z: jnp.sum(z ** 2)) /
tree_sum_fn(lambda z: jnp.prod(jnp.array(z.shape))))
total_loss = loss + loss_c + FLAGS.weight_decay_mult * weight_l2
stats = utils.Stats(loss=loss, psnr=psnr, loss_c=loss_c,
psnr_c=psnr_c, weight_l2=weight_l2)
return total_loss, stats
(_, stats), grad = (
jax.value_and_grad(loss_fn, has_aux=True)(state.optimizer.target))
#grad = jax.lax.pmean(grad, axis_name="batch")
stats = jax.lax.pmean(stats, axis_name="batch")
# Clip the gradient by value.
if FLAGS.grad_max_val > 0:
clip_fn = lambda z: jnp.clip(z, -FLAGS.grad_max_val, FLAGS.grad_max_val)
grad = jax.tree_util.tree_map(clip_fn, grad)
# Clip the (possibly value-clipped) gradient by norm.
if FLAGS.grad_max_norm > 0:
grad_norm = jnp.sqrt(
jax.tree_util.tree_reduce(
lambda x, y: x + jnp.sum(y ** 2), grad, initializer=0))
mult = jnp.minimum(1, FLAGS.grad_max_norm / (1e-7 + grad_norm))
grad = jax.tree_util.tree_map(lambda z: mult * z, grad)
return grad, stats, rng
new_optimizer = state.optimizer.apply_gradient(grad, learning_rate =lr)
new_state = state.replace(optimizer=new_optimizer)
return new_state, stats, rng
def update_step(state, grad, lr):
grad = jax.lax.pmean(grad, axis_name="batch")
new_optimizer = state.optimizer.apply_gradient(grad, learning_rate=lr)
new_state = state.replace(optimizer=new_optimizer)
return new_state
def main(unused_argv):
#wandb.init(project="hf-flax-clip-nerf", entity="wandb", sync_tensorboard=True)
rng = random.PRNGKey(20200823)
# Shift the numpy random seed by host_id() to shuffle data loaded by different
# hosts.
np.random.seed(20201473 + jax.host_id())
if FLAGS.config is not None:
utils.update_flags(FLAGS)
if FLAGS.batch_size % jax.device_count() != 0:
raise ValueError("Batch size must be divisible by the number of devices.")
if FLAGS.train_dir is None:
raise ValueError("train_dir must be set. None set now.")
if FLAGS.data_dir is None:
raise ValueError("data_dir must be set. None set now.")
# setup CLIP model
if FLAGS.use_semantic_loss:
clip_model = clip_utils.init_CLIP(FLAGS.clip_output_dtype,
FLAGS.clip_model_name)
print(f'semantic loss ACTIVATED, CLIP is set up '
f'(sc_loss_mult: {FLAGS.sc_loss_mult})')
else:
clip_model = None
print('semantic loss DEACTIVATED, CLIP is set to None')
dataset = datasets.get_dataset("train", FLAGS, clip_model)
test_dataset = datasets.get_dataset("test", FLAGS, clip_model)
# setup NeRF model
rng, key = random.split(rng)
model, variables = models.get_model(key, dataset.peek(), FLAGS)
optimizer = flax.optim.Adam(FLAGS.lr_init).create(variables)
state = utils.TrainState(optimizer=optimizer)
del optimizer, variables
learning_rate_fn = functools.partial(
utils.learning_rate_decay,
lr_init=FLAGS.lr_init,
lr_final=FLAGS.lr_final,
max_steps=FLAGS.max_steps,
lr_delay_steps=FLAGS.lr_delay_steps,
lr_delay_mult=FLAGS.lr_delay_mult)
train_pstep = jax.pmap(
functools.partial(train_step, model, clip_model),
axis_name="batch",
in_axes=(0, 0, 0, None, None, None),
donate_argnums=(2,))
update_pstep = jax.pmap(
functools.partial(update_step,),
axis_name="batch",
in_axes=(0, 0, None),
donate_argnums=(0,))
def render_fn(variables, key_0, key_1, rays):
return model.apply(variables, key_0, key_1, rays, FLAGS.randomized)
render_pfn = jax.pmap(
render_fn,
in_axes=(None, None, None, 0), # Only distribute the data input.
donate_argnums=(3,),
axis_name="batch")
def render_fn_(variables, key_0, key_1, rays):
return model.apply(variables, key_0, key_1, rays, False, True)
render_pfn_ = jax.pmap(
render_fn_,
in_axes=(None, None, None, 0), # Only distribute the data input.
donate_argnums=(3,),
axis_name="batch")
# Compiling to the CPU because it's faster and more accurate.
ssim_fn = jax.jit(
functools.partial(utils.compute_ssim, max_val=1.), backend="cpu")
if not utils.isdir(FLAGS.train_dir):
utils.makedirs(FLAGS.train_dir)
state = checkpoints.restore_checkpoint(FLAGS.train_dir, state)
# Resume training a the step of the last checkpoint.
init_step = state.optimizer.state.step + 1
# for distributive training
state = flax.jax_utils.replicate(state)
if jax.host_id() == 0:
summary_writer = tensorboard.SummaryWriter(FLAGS.train_dir)
# Prefetch_buffer_size = 3 x batch_size
pdataset = flax.jax_utils.prefetch_to_device(dataset, 3)
n_local_devices = jax.local_device_count()
rng = rng + jax.host_id() # Make random seed separate across hosts.
keys = random.split(rng, n_local_devices) # For pmapping RNG keys.
gc.disable() # Disable automatic garbage collection for efficiency.
stats_trace = []
reset_timer = True
# for semantic loss update
sc_image = None
sc_loss = 0.
for step, batch in tqdm(zip(range(init_step, FLAGS.max_steps + 1), pdataset)):
if reset_timer:
t_loop_start = time.time()
reset_timer = False
lr = learning_rate_fn(step)
grad, stats, keys = train_pstep(keys, state, batch, lr, step, FLAGS.sc_loss_every)
if step%FLAGS.sc_loss_every == 0 and FLAGS.use_semantic_loss:
sc_batch = dataset.get_clip_data()
if jax.local_device_count() > 1:
sc_loss, sc_grad, sc_image = clip_utils.semantic_step_multi(render_pfn_, clip_model, keys[0], state, sc_batch, lr)
else:
sc_loss, sc_grad, sc_image = clip_utils.semantic_step_single(model, clip_model, keys[0], state, sc_batch, lr)
if jax.host_id() == 0 and step%FLAGS.print_every:
for mlp_k, mlp in grad['params'].items():
for layer_k, layer_g in mlp.items():
summary_writer.scalar("%s/%s/kernel_grad"%(mlp_k, layer_k), jnp.linalg.norm(jnp.mean(layer_g['kernel'],0)), step)
for mlp_k, mlp in sc_grad['params'].items():
for layer_k, layer_g in mlp.items():
summary_writer.scalar("%s/%s/kernel_sc_grad"%(mlp_k, layer_k), jnp.linalg.norm(layer_g['kernel']), step)
leaves, treedef = jax.tree_flatten(grad)
sc_leaves, _ = jax.tree_flatten(sc_grad)
grad = treedef.unflatten(g+jnp.expand_dims(sc_g,0) for g, sc_g in zip(leaves, sc_leaves))
state = update_pstep(state, grad, lr)
if jax.host_id() == 0:
stats_trace.append(stats)
if step % FLAGS.gc_every == 0:
gc.collect()
# Log training summaries. This is put behind a host_id check because in
# multi-host evaluation, all hosts need to run inference even though we
# only use host 0 to record results.
if jax.host_id() == 0:
if step % FLAGS.print_every == 0:
summary_writer.scalar("loss/train", stats.loss[0], step)
summary_writer.scalar("sc_loss", sc_loss, step)
summary_writer.scalar("psnr/train", stats.psnr[0], step)
summary_writer.scalar("train_coarse/loss", stats.loss_c[0], step)
summary_writer.scalar("train_coarse/psnr", stats.psnr_c[0], step)
summary_writer.scalar("weight_l2", stats.weight_l2[0], step)
avg_loss = np.mean(np.concatenate([s.loss for s in stats_trace]))
avg_psnr = np.mean(np.concatenate([s.psnr for s in stats_trace]))
stats_trace = []
summary_writer.scalar("train_avg/loss", avg_loss, step)
summary_writer.scalar("train_avg/psnr", avg_psnr, step)
summary_writer.scalar("learning_rate", lr, step)
steps_per_sec = FLAGS.print_every / (time.time() - t_loop_start)
reset_timer = True
rays_per_sec = FLAGS.batch_size * steps_per_sec
summary_writer.scalar("train_steps_per_sec", steps_per_sec, step)
summary_writer.scalar("train_rays_per_sec", rays_per_sec, step)
precision = int(np.ceil(np.log10(FLAGS.max_steps))) + 1
print(("{:" + "{:d}".format(precision) + "d}").format(step) +
f"/{FLAGS.max_steps:d}: " + f"i_loss={stats.loss[0]:0.4f}, " +
f"avg_loss={avg_loss:0.4f}, " +
f"weight_l2={stats.weight_l2[0]:0.2e}, " +
# f"sc_loss={sc_loss:0.4f}, " +
f"lr={lr:0.2e}, {rays_per_sec:0.0f} rays/sec")
if step % FLAGS.save_every == 0:
state_to_save = jax.device_get(jax.tree_map(lambda x: x[0], state))
checkpoints.save_checkpoint(
FLAGS.train_dir, state_to_save, int(step), keep=100)
# Test-set evaluation.
if FLAGS.render_every > 0 and step % FLAGS.render_every == 0:
# We reuse the same random number generator from the optimization step
# here on purpose so that the visualization matches what happened in
# training.
t_eval_start = time.time()
eval_variables = jax.device_get(jax.tree_map(lambda x: x[0],
state)).optimizer.target
test_case = next(test_dataset)
pred_color, pred_disp, pred_acc = utils.render_image(
functools.partial(render_pfn, eval_variables),
test_case["rays"],
keys[0],
FLAGS.dataset == "llff",
chunk=FLAGS.chunk)
# Log eval summaries on host 0.
if jax.host_id() == 0:
psnr = utils.compute_psnr(
((pred_color - test_case["pixels"]) ** 2).mean())
ssim = ssim_fn(pred_color, test_case["pixels"])
eval_time = time.time() - t_eval_start
num_rays = jnp.prod(jnp.array(test_case["rays"].directions.shape[:-1]))
rays_per_sec = num_rays / eval_time
summary_writer.scalar("test_rays_per_sec", rays_per_sec, step)
print(f"Eval {step}: {eval_time:0.3f}s., {rays_per_sec:0.0f} rays/sec")
summary_writer.scalar("psnr/test", psnr, step)
summary_writer.scalar("test_psnr", psnr, step)
summary_writer.scalar("ssim/ssim", ssim, step)
summary_writer.scalar("test_ssim", ssim, step)
if sc_image is not None:
summary_writer .image("random_ray_image", sc_image, step)
summary_writer.image("test_pred_color", pred_color, step)
summary_writer.image("test_pred_disp", pred_disp, step)
summary_writer.image("test_pred_acc", pred_acc, step)
summary_writer.image("test_target", test_case["pixels"], step)
if FLAGS.max_steps % FLAGS.save_every != 0:
state = jax.device_get(jax.tree_map(lambda x: x[0], state))
checkpoints.save_checkpoint(
FLAGS.train_dir, state, int(FLAGS.max_steps), keep=100)
if __name__ == "__main__":
app.run(main)
|