sseung0703's picture
Create app/docs.py
22df56c
raw
history blame
3.77 kB
import json
import streamlit as st
from transformers import AutoTokenizer, RobertaForSequenceClassification, pipeline
with open("config.json") as f:
cfg = json.loads(f.read())
@st.cache(allow_output_mutation=True, show_spinner=False)
def load_model(input_text, model_name_or_path):
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = RobertaForSequenceClassification.from_pretrained(model_name_or_path)
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
result = nlp(input_text)
return result
def app():
st.title("मराठी Marathi News Classifier")
st.markdown(
"This demo uses the below fine-tuned models for marathi news classification:\
"
"- [IndicNLP Marathi News Classifier](https://huggingface.co/flax-community/mr-indicnlp-classifier) fine-tuned on "
"[IndicNLP Marathi News Dataset](https://github.com/ai4bharat/indicnlp_corpus#indicnlp-news-article-classification-dataset)\
"
"> `IndicNLP` model predicts one of these 3 classes - `['lifestyle', 'entertainment', 'sports']`\
"
"- [iNLTK Marathi News Classifier](https://huggingface.co/flax-community/mr-inltk-classifier) fine-tuned on "
"[Marathi News Dataset](https://www.kaggle.com/disisbig/marathi-news-dataset)\
"
"> `iNLTK` model predicts one of these 3 classes - `['state', 'entertainment', 'sports']`"
)
classifier = st.sidebar.selectbox("Select a Model", index=0, options=["IndicNLP", "iNLTK"])
st.sidebar.markdown(
"**IndicNLP Classes**\
"
"- lifestyle\
"
"- entertainment\
"
"- sports\
"
"\
"
"**iNLTK Classes**\
"
"- state\
"
"- entertainment\
"
"- sports"
)
sample_texts = [
"रोहित शर्माने सरावाला सुरुवात करण्यापूर्वी भारतीय खेळाडूला दिला कानमंत्र, म्हणाला...",
"जॉनी लीवर यांनी नम्रता संभेरावला दिलं खास गिफ्ट, अभिनेत्रीने व्यक्त केल्या भावना",
"Custom",
]
model_name_or_path = cfg["models"][classifier]
text_to_classify = st.selectbox("Select a Text", options=sample_texts, index=len(sample_texts) - 1)
if text_to_classify == "Custom":
text_to_classify = st.text_input("Enter custom text:")
predict_button = st.button("Predict")
if predict_button:
with st.spinner("Generating prediction..."):
result = load_model(text_to_classify, model_name_or_path)
st.markdown("## Predicted Label: `{}`".format(result[0]["label"]))
st.markdown("## Confidence: `{}`%".format(round(result[0]["score"], 3) * 100))
st.markdown("- - -")
st.markdown(
"❓ Can't figure out where to get a sample text other than the predefined ones? ❓\
"
"\
"
"We have provided Marathi newspaper links (section wise) below. Head over to any section of your choice, "
"copy any headline and paste below to see if the model is predicting the respective class correctly or not?\
"
"- [entertainment](https://maharashtratimes.com/entertainment/articlelist/19359255.cms)\
"
"- [sports](https://maharashtratimes.com/sports/articlelist/2429056.cms)\
"
"- [lifestyle](https://maharashtratimes.com/lifestyle-news/articlelist/2429025.cms)\
"
"- [state](https://maharashtratimes.com/maharashtra/articlelist/2429066.cms)\
"
"> 📒 NOTE: Both models are not trained on above headlines! Feel free to use any headline from any newspaper"
)