|
from typing import Any, Dict, List |
|
|
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
return_dict=True, |
|
device_map="auto", |
|
load_in_8bit=True, |
|
torch_dtype=dtype, |
|
trust_remote_code=True, |
|
) |
|
|
|
generation_config = self.model.generation_config |
|
generation_config.max_new_tokens = 200 |
|
generation_config.temperature = 0.8 |
|
generation_config.top_p = 0.8 |
|
generation_config.num_return_sequences = 1 |
|
generation_config.pad_token_id = self.tokenizer.eos_token_id |
|
generation_config.eos_token_id = self.tokenizer.eos_token_id |
|
generation_config.early_stopping = True |
|
self.generate_config = generation_config |
|
|
|
self.pipeline = transformers.pipeline( |
|
"text-generation", model=self.model, tokenizer=self.tokenizer |
|
) |
|
|
|
|
|
def _ensure_token_limit(self, text): |
|
"""Ensure text is within the model's token limit.""" |
|
tokens = self.tokenizer.tokenize(text) |
|
if len(tokens) > 2048: |
|
|
|
tokens = tokens[-2048:] |
|
return self.tokenizer.decode(tokens) |
|
return text |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
user_prompt = data.pop("inputs", data) |
|
|
|
|
|
self.conversation_history += f"<user>: {user_prompt}\n" |
|
|
|
|
|
self.conversation_history = self._ensure_token_limit(self.conversation_history) |
|
|
|
|
|
permanent_context = "<context>: You are a life coaching bot with the goal of providing guidance, improving understanding, reducing suffering and improving life. Gain as much understanding of the user before providing guidance." |
|
structured_prompt = f"{permanent_context}\n{self.conversation_history}<bot> response:" |
|
|
|
result = self.pipeline(structured_prompt, generation_config=self.generate_config) |
|
|
|
|
|
response_text = self._extract_response(result[0]['generated_text']) |
|
|
|
|
|
response_text = response_text.rsplit("[END", 1)[0].strip() |
|
|
|
|
|
self.conversation_history += f"<bot>: {response_text}\n" |
|
self.conversation_history = self._ensure_token_limit(self.conversation_history) |
|
|
|
return [{"generated_text": response_text}] |
|
|
|
return {"response": response_text} |