File size: 4,456 Bytes
40e02d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: l3bgi-sft-qlora-r64
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
# Allow cli options to override these settings.
strict: false

# Base model settings.
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tokenizer_config: meta-llama/Meta-Llama-3-8B-Instruct
model_type: AutoModelForCausalLM

# Wandb settings
wandb_entity: collinear
wandb_project: template-training
wandb_name: l3smi-sft-qlora-r64

# Output settings
save_safetensors: true
hub_model_id: fozziethebeat/l3bgi-sft-qlora-r64
dataset_prepared_path: data/l3bgi-sft-qlora-r64
output_dir: models/l3bgi-sft-qlora-r64

# Data format settings
chat_template: llama3
datasets:
  - path: fozziethebeat/alpaca_messages_2k_test
    split: train
    type: chat_template
    chat_template: llama3
    field_messages: messages 
    message_field_role: role
    message_field_content: content
test_datasets:
  - path: fozziethebeat/alpaca_messages_2k_test
    split: test
    type: chat_template
    chat_template: llama3
    field_messages: messages 
    message_field_role: role
    message_field_content: content

# Data packing settings
sequence_len: 512
train_on_inputs: false
pad_to_sequence_len: true
group_by_length: false
sample_packing: false
eval_sample_packing: false

# Adapter settings
adapter: qlora
lora_model_dir:
load_in_8bit: false
load_in_4bit: true
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

# Computation Format settings
bf16: true
fp16:
tf32: false

# Trainer settings
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 1e-5
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
#flash_attention: true

warmup_steps: 10
eval_table_size:
eval_max_new_tokens: 128
evals_per_epoch: 4
saves_per_epoch: 1
debug:
weight_decay: 0.01
special_tokens:
  pad_token: <|end_of_text|>
deepspeed:
fsdp:

```

</details><br>

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/collinear/template-training/runs/pav37wt6)
# l3bgi-sft-qlora-r64

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0220

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0859        | 0.0022 | 1    | 1.3374          |
| 0.9847        | 0.2497 | 111  | 1.1122          |
| 1.203         | 0.4994 | 222  | 1.0451          |
| 1.3916        | 0.7492 | 333  | 1.0307          |
| 0.7893        | 0.9989 | 444  | 1.0251          |
| 1.0244        | 1.2486 | 555  | 1.0228          |
| 0.6814        | 1.4983 | 666  | 1.0221          |
| 0.9408        | 1.7480 | 777  | 1.0224          |
| 1.0832        | 1.9978 | 888  | 1.0220          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.43.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1