File size: 2,380 Bytes
49f6eea
 
8d8d6a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49f6eea
8d8d6a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- dataset
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-base-uncased-finetuned-with-spanish-tweets-clf-cleaned-ds
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: dataset
      type: dataset
      config: 60-20-20
      split: dev
      args: 60-20-20
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5556323427781618
    - name: F1
      type: f1
      value: 0.5577964748279268
    - name: Precision
      type: precision
      value: 0.5682169161320979
    - name: Recall
      type: recall
      value: 0.5539741666889855
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-with-spanish-tweets-clf-cleaned-ds

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1229
- Accuracy: 0.5556
- F1: 0.5578
- Precision: 0.5682
- Recall: 0.5540

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.0683        | 1.0   | 543  | 1.0019          | 0.4997   | 0.4041 | 0.4724    | 0.4488 |
| 0.9372        | 2.0   | 1086 | 0.9395          | 0.5425   | 0.5143 | 0.5480    | 0.5123 |
| 0.7283        | 3.0   | 1629 | 0.9674          | 0.5632   | 0.5615 | 0.5658    | 0.5587 |
| 0.5127        | 4.0   | 2172 | 1.1229          | 0.5556   | 0.5578 | 0.5682    | 0.5540 |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.13.2