--- license: mit language: - xh - nr - zu - ss --- Usage: 1. Corrupted span prediction. ``` ## Example from here: https://huggingface.co/docs/transformers/en/model_doc/byt5 tokenizer = AutoTokenizer.from_pretrained("francois-meyer/nguni-byt5-large") model = AutoModelForSeq2SeqLM.from_pretrained("francois-meyer/nguni-byt5-large") #model = T5ForConditionalGeneration.from_pretrained(model_path) input_ids_prompt = "The dog chases a ball in the park." input_ids = tokenizer(input_ids_prompt).input_ids input_ids = torch.tensor([input_ids[:8] + [258] + input_ids[14:21] + [257] + input_ids[28:]]) ## Corruption output_ids = model.generate(input_ids, max_length=100)[0].tolist() output_ids_list = [] start_token = 0 sentinel_token = 258 while sentinel_token in output_ids: split_idx = output_ids.index(sentinel_token) output_ids_list.append(output_ids[start_token:split_idx]) start_token = split_idx sentinel_token -= 1 output_ids_list.append(output_ids[start_token:]) output_string = tokenizer.batch_decode(output_ids_list) print(output_string) ``` 2. For any other task, you will need to fine-tune it like any other T5, mT5, byT5 model.