--- base_model: mistralai/Mistral-7B-Instruct-v0.3 datasets: - generator library_name: peft license: apache-2.0 tags: - trl - sft - generated_from_trainer model-index: - name: Mistral-7B-text-to-sql-flash-attention-2-FAISS results: [] --- # Mistral-7B-text-to-sql-flash-attention-2-FAISS This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.4583 ## Model description Article: https://medium.com/@frankmorales_91352/faiss-powered-semantic-search-meets-fine-tuned-mistral-a-novel-approach-to-text-to-sql-generation-fc633d9c1bc2 ## Training and evaluation data Training: https://github.com/frank-morales2020/MLxDL/blob/main/FAISS_FINETUNING.ipynb Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/FAISS_Evaluator_Mistral_7B_text_to_sql.ipynb ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - lr_scheduler_warmup_steps: 15 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8409 | 0.4 | 10 | 0.6999 | | 0.616 | 0.8 | 20 | 0.5322 | | 0.4977 | 1.2 | 30 | 0.4910 | | 0.4486 | 1.6 | 40 | 0.4661 | | 0.4313 | 2.0 | 50 | 0.4529 | | 0.36 | 2.4 | 60 | 0.4620 | | 0.3534 | 2.8 | 70 | 0.4583 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1