Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: openai/whisper-large-v3
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- fsicoli/cv19-fleurs
|
9 |
+
metrics:
|
10 |
+
- wer
|
11 |
+
model-index:
|
12 |
+
- name: whisper-large-v3-pt-cv19-fleurs
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: fsicoli/cv19-fleurs default
|
19 |
+
type: fsicoli/cv19-fleurs
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.0756
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# whisper-large-v3-pt-cv19-fleurs-ct2
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fsicoli/cv19-fleurs default dataset converted to CT2.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1823
|
35 |
+
- Wer: 0.0756
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 6.25e-06
|
55 |
+
- train_batch_size: 8
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 2
|
59 |
+
- total_train_batch_size: 16
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 10000
|
63 |
+
- training_steps: 50000
|
64 |
+
- mixed_precision_training: Native AMP
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:-------:|:-----:|:---------------:|:------:|
|
70 |
+
| 0.0559 | 2.2883 | 5000 | 0.1096 | 0.0730 |
|
71 |
+
| 0.0581 | 4.5767 | 10000 | 0.1326 | 0.0829 |
|
72 |
+
| 0.0225 | 6.8650 | 15000 | 0.1570 | 0.0849 |
|
73 |
+
| 0.0088 | 9.1533 | 20000 | 0.1704 | 0.0840 |
|
74 |
+
| 0.0065 | 11.4416 | 25000 | 0.1823 | 0.0849 |
|
75 |
+
| 0.006 | 13.7300 | 30000 | 0.1808 | 0.0809 |
|
76 |
+
| 0.0055 | 16.0183 | 35000 | 0.1811 | 0.0790 |
|
77 |
+
| 0.0031 | 18.3066 | 40000 | 0.1907 | 0.0784 |
|
78 |
+
| 0.0011 | 20.5950 | 45000 | 0.1852 | 0.0771 |
|
79 |
+
| 0.0003 | 22.8833 | 50000 | 0.1848 | 0.0756 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.45.0.dev0
|
85 |
+
- Pytorch 2.4.1
|
86 |
+
- Datasets 2.21.0
|
87 |
+
- Tokenizers 0.19.1
|