|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
import tqdm |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
class DDIM(DiffusionPipeline): |
|
def __init__(self, unet, noise_scheduler): |
|
super().__init__() |
|
self.register_modules(unet=unet, noise_scheduler=noise_scheduler) |
|
|
|
def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50): |
|
|
|
if torch_device is None: |
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
num_trained_timesteps = self.noise_scheduler.num_timesteps |
|
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps) |
|
|
|
self.unet.to(torch_device) |
|
image = self.noise_scheduler.sample_noise( |
|
(batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), |
|
device=torch_device, |
|
generator=generator, |
|
) |
|
|
|
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps): |
|
|
|
train_step = inference_step_times[t] |
|
prev_train_step = inference_step_times[t - 1] if t > 0 else -1 |
|
|
|
|
|
alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step) |
|
alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step) |
|
alpha_prod_t_rsqrt = 1 / alpha_prod_t.sqrt() |
|
alpha_prod_t_prev_rsqrt = 1 / alpha_prod_t_prev.sqrt() |
|
beta_prod_t_sqrt = (1 - alpha_prod_t).sqrt() |
|
beta_prod_t_prev_sqrt = (1 - alpha_prod_t_prev).sqrt() |
|
|
|
|
|
coeff_1 = ( |
|
(alpha_prod_t_prev - alpha_prod_t).sqrt() |
|
* alpha_prod_t_prev_rsqrt |
|
* beta_prod_t_prev_sqrt |
|
/ beta_prod_t_sqrt |
|
* eta |
|
) |
|
coeff_2 = ((1 - alpha_prod_t_prev) - coeff_1**2).sqrt() |
|
|
|
|
|
with torch.no_grad(): |
|
noise_residual = self.unet(image, train_step) |
|
|
|
|
|
pred_mean = alpha_prod_t_rsqrt * (image - beta_prod_t_sqrt * noise_residual) |
|
pred_mean = torch.clamp(pred_mean, -1, 1) |
|
pred_mean = (1 / alpha_prod_t_prev_rsqrt) * pred_mean + coeff_2 * noise_residual |
|
|
|
|
|
if eta > 0.0: |
|
noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator) |
|
image = pred_mean + coeff_1 * noise |
|
else: |
|
image = pred_mean |
|
|
|
return image |
|
|