File size: 5,589 Bytes
4c15971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---

license: bsd-3-clause
base_model: MIT/ast-finetuned-speech-commands-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ast-arabic
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ast-arabic

This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5734
- Accuracy: 0.8518
- Precision: 0.8598
- Recall: 0.8518
- F1: 0.8430
- Binary: 0.8957

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500

- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log        | 0.19  | 50   | 4.3695          | 0.0162   | 0.0086    | 0.0162 | 0.0095 | 0.1469 |
| No log        | 0.38  | 100  | 3.3975          | 0.2480   | 0.2204    | 0.2480 | 0.2000 | 0.4747 |
| No log        | 0.58  | 150  | 1.9473          | 0.5067   | 0.4987    | 0.5067 | 0.4568 | 0.6574 |
| No log        | 0.77  | 200  | 1.2409          | 0.6685   | 0.6872    | 0.6685 | 0.6429 | 0.7704 |
| No log        | 0.96  | 250  | 0.9154          | 0.7493   | 0.7869    | 0.7493 | 0.7383 | 0.8267 |
| No log        | 1.15  | 300  | 0.7568          | 0.7601   | 0.7885    | 0.7601 | 0.7487 | 0.8342 |
| No log        | 1.34  | 350  | 0.6875          | 0.7951   | 0.8316    | 0.7951 | 0.7902 | 0.8558 |
| No log        | 1.53  | 400  | 0.6592          | 0.8032   | 0.8336    | 0.8032 | 0.7964 | 0.8633 |
| No log        | 1.73  | 450  | 0.6041          | 0.8059   | 0.8317    | 0.8059 | 0.7943 | 0.8663 |
| 1.8008        | 1.92  | 500  | 0.6096          | 0.8194   | 0.8487    | 0.8194 | 0.8087 | 0.8747 |
| 1.8008        | 2.11  | 550  | 0.5057          | 0.8410   | 0.8677    | 0.8410 | 0.8395 | 0.8887 |
| 1.8008        | 2.3   | 600  | 0.5269          | 0.8248   | 0.8642    | 0.8248 | 0.8234 | 0.8757 |
| 1.8008        | 2.49  | 650  | 0.4551          | 0.8598   | 0.8851    | 0.8598 | 0.8598 | 0.9022 |
| 1.8008        | 2.68  | 700  | 0.4962          | 0.8571   | 0.8766    | 0.8571 | 0.8552 | 0.9022 |
| 1.8008        | 2.88  | 750  | 0.5232          | 0.8464   | 0.8737    | 0.8464 | 0.8463 | 0.8935 |
| 1.8008        | 3.07  | 800  | 0.5889          | 0.8248   | 0.8583    | 0.8248 | 0.8189 | 0.8774 |
| 1.8008        | 3.26  | 850  | 0.5301          | 0.8571   | 0.8811    | 0.8571 | 0.8547 | 0.8992 |
| 1.8008        | 3.45  | 900  | 0.4731          | 0.8625   | 0.8812    | 0.8625 | 0.8614 | 0.9049 |
| 1.8008        | 3.64  | 950  | 0.4917          | 0.8544   | 0.8782    | 0.8544 | 0.8522 | 0.8992 |
| 0.2592        | 3.84  | 1000 | 0.4909          | 0.8625   | 0.8895    | 0.8625 | 0.8629 | 0.9049 |
| 0.2592        | 4.03  | 1050 | 0.5065          | 0.8544   | 0.8790    | 0.8544 | 0.8545 | 0.8992 |
| 0.2592        | 4.22  | 1100 | 0.5261          | 0.8437   | 0.8790    | 0.8437 | 0.8435 | 0.8906 |
| 0.2592        | 4.41  | 1150 | 0.5140          | 0.8598   | 0.8935    | 0.8598 | 0.8591 | 0.9019 |
| 0.2592        | 4.6   | 1200 | 0.4787          | 0.8760   | 0.8979    | 0.8760 | 0.8751 | 0.9132 |
| 0.2592        | 4.79  | 1250 | 0.5090          | 0.8652   | 0.8861    | 0.8652 | 0.8637 | 0.9049 |
| 0.2592        | 4.99  | 1300 | 0.5697          | 0.8437   | 0.8753    | 0.8437 | 0.8416 | 0.8898 |
| 0.2592        | 5.18  | 1350 | 0.5416          | 0.8625   | 0.8868    | 0.8625 | 0.8618 | 0.9038 |
| 0.2592        | 5.37  | 1400 | 0.5563          | 0.8518   | 0.8767    | 0.8518 | 0.8513 | 0.8962 |
| 0.2592        | 5.56  | 1450 | 0.5191          | 0.8679   | 0.8835    | 0.8679 | 0.8655 | 0.9097 |
| 0.0549        | 5.75  | 1500 | 0.4890          | 0.8787   | 0.9009    | 0.8787 | 0.8768 | 0.9164 |
| 0.0549        | 5.94  | 1550 | 0.4928          | 0.8814   | 0.9090    | 0.8814 | 0.8820 | 0.9181 |
| 0.0549        | 6.14  | 1600 | 0.5669          | 0.8679   | 0.8912    | 0.8679 | 0.8685 | 0.9097 |
| 0.0549        | 6.33  | 1650 | 0.5215          | 0.8760   | 0.9003    | 0.8760 | 0.8758 | 0.9132 |
| 0.0549        | 6.52  | 1700 | 0.5385          | 0.8760   | 0.9052    | 0.8760 | 0.8764 | 0.9135 |
| 0.0549        | 6.71  | 1750 | 0.5916          | 0.8625   | 0.8908    | 0.8625 | 0.8603 | 0.9038 |
| 0.0549        | 6.9   | 1800 | 0.5863          | 0.8598   | 0.8798    | 0.8598 | 0.8591 | 0.9030 |
| 0.0549        | 7.09  | 1850 | 0.5955          | 0.8571   | 0.8844    | 0.8571 | 0.8574 | 0.9011 |
| 0.0549        | 7.29  | 1900 | 0.6003          | 0.8571   | 0.8867    | 0.8571 | 0.8549 | 0.9011 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1