File size: 7,016 Bytes
4c15971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0328d8a
 
 
 
 
 
4c15971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0328d8a
4c15971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0328d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c15971
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---

license: bsd-3-clause
base_model: MIT/ast-finetuned-speech-commands-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ast-arabic
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ast-arabic

This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6961
- Accuracy: 0.7871
- Precision: 0.8186
- Recall: 0.7871
- F1: 0.7848
- Binary: 0.8501

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500

- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log        | 0.19  | 50   | 4.5626          | 0.0027   | 0.0001    | 0.0027 | 0.0003 | 0.0860 |
| No log        | 0.38  | 100  | 4.4915          | 0.0054   | 0.0037    | 0.0054 | 0.0034 | 0.0954 |
| No log        | 0.58  | 150  | 4.3465          | 0.0216   | 0.0105    | 0.0216 | 0.0123 | 0.1488 |
| No log        | 0.77  | 200  | 4.1317          | 0.0647   | 0.0355    | 0.0647 | 0.0372 | 0.2356 |
| No log        | 0.96  | 250  | 3.8709          | 0.1267   | 0.0963    | 0.1267 | 0.0880 | 0.3245 |
| No log        | 1.15  | 300  | 3.4181          | 0.2318   | 0.2405    | 0.2318 | 0.1927 | 0.4442 |
| No log        | 1.34  | 350  | 2.8697          | 0.3612   | 0.3714    | 0.3612 | 0.3150 | 0.5426 |
| No log        | 1.53  | 400  | 2.3609          | 0.4663   | 0.4425    | 0.4663 | 0.4157 | 0.6248 |
| No log        | 1.73  | 450  | 1.9516          | 0.5606   | 0.5573    | 0.5606 | 0.5246 | 0.6903 |
| 3.5112        | 1.92  | 500  | 1.6670          | 0.6092   | 0.6428    | 0.6092 | 0.5849 | 0.7240 |
| 3.5112        | 2.11  | 550  | 1.4376          | 0.6739   | 0.6988    | 0.6739 | 0.6544 | 0.7709 |
| 3.5112        | 2.3   | 600  | 1.3049          | 0.6658   | 0.7019    | 0.6658 | 0.6495 | 0.7636 |
| 3.5112        | 2.49  | 650  | 1.1820          | 0.6846   | 0.7214    | 0.6846 | 0.6731 | 0.7784 |
| 3.5112        | 2.68  | 700  | 1.0847          | 0.7035   | 0.7220    | 0.7035 | 0.6913 | 0.7916 |
| 3.5112        | 2.88  | 750  | 1.0370          | 0.7116   | 0.7415    | 0.7116 | 0.7004 | 0.7973 |
| 3.5112        | 3.07  | 800  | 0.9833          | 0.7062   | 0.7132    | 0.7062 | 0.6903 | 0.7935 |
| 3.5112        | 3.26  | 850  | 0.9453          | 0.7116   | 0.7384    | 0.7116 | 0.6986 | 0.7973 |
| 3.5112        | 3.45  | 900  | 0.9140          | 0.7412   | 0.7724    | 0.7412 | 0.7313 | 0.8181 |
| 3.5112        | 3.64  | 950  | 0.8602          | 0.7493   | 0.7719    | 0.7493 | 0.7403 | 0.8237 |
| 1.0914        | 3.84  | 1000 | 0.8340          | 0.7520   | 0.7857    | 0.7520 | 0.7469 | 0.8256 |
| 1.0914        | 4.03  | 1050 | 0.8317          | 0.7628   | 0.8014    | 0.7628 | 0.7602 | 0.8332 |
| 1.0914        | 4.22  | 1100 | 0.7983          | 0.7628   | 0.7863    | 0.7628 | 0.7584 | 0.8332 |
| 1.0914        | 4.41  | 1150 | 0.8015          | 0.7601   | 0.7852    | 0.7601 | 0.7529 | 0.8313 |
| 1.0914        | 4.6   | 1200 | 0.7584          | 0.7709   | 0.7959    | 0.7709 | 0.7685 | 0.8388 |
| 1.0914        | 4.79  | 1250 | 0.7518          | 0.7763   | 0.7957    | 0.7763 | 0.7699 | 0.8426 |
| 1.0914        | 4.99  | 1300 | 0.7484          | 0.7520   | 0.7698    | 0.7520 | 0.7449 | 0.8256 |
| 1.0914        | 5.18  | 1350 | 0.7518          | 0.7466   | 0.7711    | 0.7466 | 0.7397 | 0.8218 |
| 1.0914        | 5.37  | 1400 | 0.7379          | 0.7682   | 0.7961    | 0.7682 | 0.7654 | 0.8369 |
| 1.0914        | 5.56  | 1450 | 0.7356          | 0.7601   | 0.7770    | 0.7601 | 0.7533 | 0.8313 |
| 0.6112        | 5.75  | 1500 | 0.7351          | 0.7763   | 0.8018    | 0.7763 | 0.7720 | 0.8426 |
| 0.6112        | 5.94  | 1550 | 0.7230          | 0.7655   | 0.7886    | 0.7655 | 0.7631 | 0.8350 |
| 0.6112        | 6.14  | 1600 | 0.7222          | 0.7709   | 0.7977    | 0.7709 | 0.7656 | 0.8388 |
| 0.6112        | 6.33  | 1650 | 0.7054          | 0.7790   | 0.8022    | 0.7790 | 0.7744 | 0.8445 |
| 0.6112        | 6.52  | 1700 | 0.7286          | 0.7736   | 0.8016    | 0.7736 | 0.7693 | 0.8407 |
| 0.6112        | 6.71  | 1750 | 0.6991          | 0.7925   | 0.8141    | 0.7925 | 0.7907 | 0.8539 |
| 0.6112        | 6.9   | 1800 | 0.7096          | 0.7655   | 0.7907    | 0.7655 | 0.7633 | 0.8350 |
| 0.6112        | 7.09  | 1850 | 0.7010          | 0.7844   | 0.8062    | 0.7844 | 0.7821 | 0.8482 |
| 0.6112        | 7.29  | 1900 | 0.7026          | 0.7574   | 0.7813    | 0.7574 | 0.7514 | 0.8294 |
| 0.6112        | 7.48  | 1950 | 0.6973          | 0.7817   | 0.7992    | 0.7817 | 0.7785 | 0.8464 |
| 0.4147        | 7.67  | 2000 | 0.7035          | 0.7736   | 0.7911    | 0.7736 | 0.7707 | 0.8407 |
| 0.4147        | 7.86  | 2050 | 0.6894          | 0.7844   | 0.8089    | 0.7844 | 0.7827 | 0.8482 |
| 0.4147        | 8.05  | 2100 | 0.7046          | 0.7763   | 0.8009    | 0.7763 | 0.7731 | 0.8426 |
| 0.4147        | 8.25  | 2150 | 0.6994          | 0.7817   | 0.8028    | 0.7817 | 0.7786 | 0.8464 |
| 0.4147        | 8.44  | 2200 | 0.6890          | 0.7763   | 0.7994    | 0.7763 | 0.7723 | 0.8426 |
| 0.4147        | 8.63  | 2250 | 0.6988          | 0.7763   | 0.7954    | 0.7763 | 0.7722 | 0.8426 |
| 0.4147        | 8.82  | 2300 | 0.7021          | 0.7763   | 0.7964    | 0.7763 | 0.7731 | 0.8426 |
| 0.4147        | 9.01  | 2350 | 0.6974          | 0.7817   | 0.8048    | 0.7817 | 0.7784 | 0.8464 |
| 0.4147        | 9.2   | 2400 | 0.6861          | 0.7817   | 0.8041    | 0.7817 | 0.7807 | 0.8464 |
| 0.4147        | 9.4   | 2450 | 0.6930          | 0.7763   | 0.7994    | 0.7763 | 0.7734 | 0.8426 |
| 0.3165        | 9.59  | 2500 | 0.6954          | 0.7763   | 0.8001    | 0.7763 | 0.7741 | 0.8426 |
| 0.3165        | 9.78  | 2550 | 0.6953          | 0.7817   | 0.8045    | 0.7817 | 0.7794 | 0.8464 |
| 0.3165        | 9.97  | 2600 | 0.6940          | 0.7817   | 0.8053    | 0.7817 | 0.7794 | 0.8464 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1