fydhfzh commited on
Commit
ba51d4c
1 Parent(s): 0b65393

End of training

Browse files
README.md CHANGED
@@ -20,12 +20,12 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.6445
24
- - Accuracy: 0.7978
25
- - Precision: 0.8206
26
- - Recall: 0.7978
27
- - F1: 0.7858
28
- - Binary: 0.8580
29
 
30
  ## Model description
31
 
@@ -59,66 +59,63 @@ The following hyperparameters were used during training:
59
 
60
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
61
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
62
- | No log | 0.19 | 50 | 4.3930 | 0.0216 | 0.0009 | 0.0216 | 0.0017 | 0.1358 |
63
- | No log | 0.38 | 100 | 4.0474 | 0.0270 | 0.0008 | 0.0270 | 0.0016 | 0.2286 |
64
- | No log | 0.58 | 150 | 3.8906 | 0.0296 | 0.0013 | 0.0296 | 0.0025 | 0.2442 |
65
- | No log | 0.77 | 200 | 3.6015 | 0.0485 | 0.0029 | 0.0485 | 0.0053 | 0.3294 |
66
- | No log | 0.96 | 250 | 3.5656 | 0.0539 | 0.0138 | 0.0539 | 0.0140 | 0.3226 |
67
- | 4.0634 | 1.15 | 300 | 3.4188 | 0.0485 | 0.0066 | 0.0485 | 0.0105 | 0.3310 |
68
- | 4.0634 | 1.34 | 350 | 3.3200 | 0.0728 | 0.0113 | 0.0728 | 0.0190 | 0.3461 |
69
- | 4.0634 | 1.53 | 400 | 3.1522 | 0.0809 | 0.0132 | 0.0809 | 0.0210 | 0.3534 |
70
- | 4.0634 | 1.73 | 450 | 3.0267 | 0.1078 | 0.0260 | 0.1078 | 0.0363 | 0.3747 |
71
- | 4.0634 | 1.92 | 500 | 2.9975 | 0.1024 | 0.0334 | 0.1024 | 0.0409 | 0.3677 |
72
- | 3.3451 | 2.11 | 550 | 2.7835 | 0.1617 | 0.0980 | 0.1617 | 0.0936 | 0.4108 |
73
- | 3.3451 | 2.3 | 600 | 2.6777 | 0.2237 | 0.1048 | 0.2237 | 0.1246 | 0.4561 |
74
- | 3.3451 | 2.49 | 650 | 2.4946 | 0.2642 | 0.1847 | 0.2642 | 0.1754 | 0.4833 |
75
- | 3.3451 | 2.68 | 700 | 2.3266 | 0.2776 | 0.2121 | 0.2776 | 0.1948 | 0.4919 |
76
- | 3.3451 | 2.88 | 750 | 2.1236 | 0.3558 | 0.2876 | 0.3558 | 0.2704 | 0.5461 |
77
- | 2.8034 | 3.07 | 800 | 1.9687 | 0.3908 | 0.3357 | 0.3908 | 0.3092 | 0.5712 |
78
- | 2.8034 | 3.26 | 850 | 1.8541 | 0.4151 | 0.3439 | 0.4151 | 0.3410 | 0.5873 |
79
- | 2.8034 | 3.45 | 900 | 1.7298 | 0.4798 | 0.4299 | 0.4798 | 0.4120 | 0.6342 |
80
- | 2.8034 | 3.64 | 950 | 1.6094 | 0.5148 | 0.4804 | 0.5148 | 0.4505 | 0.6590 |
81
- | 2.8034 | 3.84 | 1000 | 1.5433 | 0.5526 | 0.5102 | 0.5526 | 0.4910 | 0.6863 |
82
- | 2.2398 | 4.03 | 1050 | 1.4371 | 0.5687 | 0.5274 | 0.5687 | 0.5078 | 0.6960 |
83
- | 2.2398 | 4.22 | 1100 | 1.2423 | 0.6334 | 0.6342 | 0.6334 | 0.6024 | 0.7445 |
84
- | 2.2398 | 4.41 | 1150 | 1.1731 | 0.6631 | 0.6428 | 0.6631 | 0.6210 | 0.7625 |
85
- | 2.2398 | 4.6 | 1200 | 1.1174 | 0.7008 | 0.7177 | 0.7008 | 0.6778 | 0.7900 |
86
- | 2.2398 | 4.79 | 1250 | 1.0677 | 0.6954 | 0.7081 | 0.6954 | 0.6674 | 0.7854 |
87
- | 2.2398 | 4.99 | 1300 | 1.0534 | 0.6739 | 0.6889 | 0.6739 | 0.6480 | 0.7712 |
88
- | 1.8823 | 5.18 | 1350 | 1.0200 | 0.7035 | 0.7035 | 0.7035 | 0.6711 | 0.7930 |
89
- | 1.8823 | 5.37 | 1400 | 0.9667 | 0.7035 | 0.7223 | 0.7035 | 0.6864 | 0.7919 |
90
- | 1.8823 | 5.56 | 1450 | 0.9057 | 0.7197 | 0.7433 | 0.7197 | 0.6972 | 0.8043 |
91
- | 1.8823 | 5.75 | 1500 | 0.8284 | 0.7547 | 0.7680 | 0.7547 | 0.7348 | 0.8296 |
92
- | 1.8823 | 5.94 | 1550 | 0.8156 | 0.7439 | 0.7708 | 0.7439 | 0.7310 | 0.8205 |
93
- | 1.6355 | 6.14 | 1600 | 0.8034 | 0.7412 | 0.7776 | 0.7412 | 0.7313 | 0.8194 |
94
- | 1.6355 | 6.33 | 1650 | 0.8032 | 0.7547 | 0.7768 | 0.7547 | 0.7430 | 0.8307 |
95
- | 1.6355 | 6.52 | 1700 | 0.8030 | 0.7412 | 0.7495 | 0.7412 | 0.7195 | 0.8213 |
96
- | 1.6355 | 6.71 | 1750 | 0.7365 | 0.7898 | 0.8217 | 0.7898 | 0.7786 | 0.8542 |
97
- | 1.6355 | 6.9 | 1800 | 0.7149 | 0.7817 | 0.8157 | 0.7817 | 0.7653 | 0.8493 |
98
- | 1.4501 | 7.09 | 1850 | 0.7493 | 0.7790 | 0.8200 | 0.7790 | 0.7698 | 0.8453 |
99
- | 1.4501 | 7.29 | 1900 | 0.7022 | 0.8086 | 0.8316 | 0.8086 | 0.8003 | 0.8663 |
100
- | 1.4501 | 7.48 | 1950 | 0.6849 | 0.7978 | 0.8226 | 0.7978 | 0.7874 | 0.8596 |
101
- | 1.4501 | 7.67 | 2000 | 0.6008 | 0.8464 | 0.8689 | 0.8464 | 0.8436 | 0.8927 |
102
- | 1.4501 | 7.86 | 2050 | 0.6288 | 0.8194 | 0.8449 | 0.8194 | 0.8112 | 0.8757 |
103
- | 1.3207 | 8.05 | 2100 | 0.6410 | 0.8167 | 0.8407 | 0.8167 | 0.8051 | 0.8722 |
104
- | 1.3207 | 8.25 | 2150 | 0.6128 | 0.8086 | 0.8318 | 0.8086 | 0.8031 | 0.8663 |
105
- | 1.3207 | 8.44 | 2200 | 0.6072 | 0.8113 | 0.8337 | 0.8113 | 0.8053 | 0.8682 |
106
- | 1.3207 | 8.63 | 2250 | 0.5702 | 0.8275 | 0.8519 | 0.8275 | 0.8210 | 0.8795 |
107
- | 1.3207 | 8.82 | 2300 | 0.6059 | 0.8140 | 0.8373 | 0.8140 | 0.8079 | 0.8714 |
108
- | 1.2239 | 9.01 | 2350 | 0.5053 | 0.8491 | 0.8685 | 0.8491 | 0.8453 | 0.8954 |
109
- | 1.2239 | 9.2 | 2400 | 0.5551 | 0.8383 | 0.8657 | 0.8383 | 0.8339 | 0.8871 |
110
- | 1.2239 | 9.4 | 2450 | 0.5767 | 0.8248 | 0.8571 | 0.8248 | 0.8201 | 0.8776 |
111
- | 1.2239 | 9.59 | 2500 | 0.5514 | 0.8383 | 0.8618 | 0.8383 | 0.8331 | 0.8852 |
112
- | 1.2239 | 9.78 | 2550 | 0.5911 | 0.8248 | 0.8542 | 0.8248 | 0.8195 | 0.8765 |
113
- | 1.2239 | 9.97 | 2600 | 0.5498 | 0.8302 | 0.8677 | 0.8302 | 0.8267 | 0.8814 |
114
- | 1.1305 | 10.16 | 2650 | 0.4722 | 0.8706 | 0.8928 | 0.8706 | 0.8672 | 0.9086 |
115
- | 1.1305 | 10.35 | 2700 | 0.5509 | 0.8302 | 0.8654 | 0.8302 | 0.8261 | 0.8814 |
116
- | 1.1305 | 10.55 | 2750 | 0.5590 | 0.8383 | 0.8713 | 0.8383 | 0.8336 | 0.8863 |
117
- | 1.1305 | 10.74 | 2800 | 0.5053 | 0.8464 | 0.8702 | 0.8464 | 0.8424 | 0.8919 |
118
- | 1.1305 | 10.93 | 2850 | 0.5135 | 0.8329 | 0.8548 | 0.8329 | 0.8272 | 0.8822 |
119
- | 1.0868 | 11.12 | 2900 | 0.5438 | 0.8221 | 0.8579 | 0.8221 | 0.8145 | 0.8757 |
120
- | 1.0868 | 11.31 | 2950 | 0.5633 | 0.8410 | 0.8720 | 0.8410 | 0.8348 | 0.8881 |
121
- | 1.0868 | 11.51 | 3000 | 0.5050 | 0.8410 | 0.8664 | 0.8410 | 0.8389 | 0.8889 |
122
 
123
 
124
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.5592
24
+ - Accuracy: 0.8464
25
+ - Precision: 0.8588
26
+ - Recall: 0.8464
27
+ - F1: 0.8431
28
+ - Binary: 0.8926
29
 
30
  ## Model description
31
 
 
59
 
60
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
61
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
62
+ | No log | 0.22 | 50 | 4.4295 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1332 |
63
+ | No log | 0.43 | 100 | 4.4254 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1274 |
64
+ | No log | 0.65 | 150 | 3.8186 | 0.0364 | 0.0121 | 0.0364 | 0.0050 | 0.3090 |
65
+ | No log | 0.86 | 200 | 3.5321 | 0.0391 | 0.0090 | 0.0391 | 0.0062 | 0.3193 |
66
+ | 4.1413 | 1.08 | 250 | 3.3337 | 0.0728 | 0.0256 | 0.0728 | 0.0286 | 0.3453 |
67
+ | 4.1413 | 1.29 | 300 | 3.1664 | 0.0970 | 0.0489 | 0.0970 | 0.0400 | 0.3590 |
68
+ | 4.1413 | 1.51 | 350 | 2.9961 | 0.1253 | 0.0613 | 0.1253 | 0.0631 | 0.3821 |
69
+ | 4.1413 | 1.73 | 400 | 2.8225 | 0.1739 | 0.0798 | 0.1739 | 0.0904 | 0.4181 |
70
+ | 4.1413 | 1.94 | 450 | 2.6439 | 0.2116 | 0.1109 | 0.2116 | 0.1236 | 0.4457 |
71
+ | 3.2276 | 2.16 | 500 | 2.4578 | 0.2385 | 0.1802 | 0.2385 | 0.1570 | 0.4670 |
72
+ | 3.2276 | 2.37 | 550 | 2.2801 | 0.3396 | 0.2831 | 0.3396 | 0.2516 | 0.5358 |
73
+ | 3.2276 | 2.59 | 600 | 2.0684 | 0.4003 | 0.3030 | 0.4003 | 0.3068 | 0.5796 |
74
+ | 3.2276 | 2.8 | 650 | 1.9308 | 0.4299 | 0.3493 | 0.4299 | 0.3516 | 0.6005 |
75
+ | 2.5852 | 3.02 | 700 | 1.8448 | 0.4501 | 0.4000 | 0.4501 | 0.3811 | 0.6146 |
76
+ | 2.5852 | 3.24 | 750 | 1.6568 | 0.5283 | 0.4743 | 0.5283 | 0.4552 | 0.6689 |
77
+ | 2.5852 | 3.45 | 800 | 1.6974 | 0.4690 | 0.4551 | 0.4690 | 0.4169 | 0.6264 |
78
+ | 2.5852 | 3.67 | 850 | 1.4828 | 0.5687 | 0.5769 | 0.5687 | 0.5231 | 0.6978 |
79
+ | 2.5852 | 3.88 | 900 | 1.4420 | 0.5580 | 0.5477 | 0.5580 | 0.5126 | 0.6896 |
80
+ | 2.1226 | 4.1 | 950 | 1.3306 | 0.6186 | 0.6133 | 0.6186 | 0.5784 | 0.7315 |
81
+ | 2.1226 | 4.31 | 1000 | 1.2209 | 0.6456 | 0.6561 | 0.6456 | 0.6076 | 0.7500 |
82
+ | 2.1226 | 4.53 | 1050 | 1.1256 | 0.6698 | 0.6865 | 0.6698 | 0.6404 | 0.7664 |
83
+ | 2.1226 | 4.75 | 1100 | 1.0700 | 0.6846 | 0.7003 | 0.6846 | 0.6586 | 0.7770 |
84
+ | 2.1226 | 4.96 | 1150 | 1.0085 | 0.7156 | 0.7415 | 0.7156 | 0.6942 | 0.7993 |
85
+ | 1.8257 | 5.18 | 1200 | 1.0190 | 0.7224 | 0.7397 | 0.7224 | 0.7028 | 0.8046 |
86
+ | 1.8257 | 5.39 | 1250 | 0.9742 | 0.7102 | 0.7244 | 0.7102 | 0.6886 | 0.7961 |
87
+ | 1.8257 | 5.61 | 1300 | 0.8793 | 0.7561 | 0.7680 | 0.7561 | 0.7384 | 0.8284 |
88
+ | 1.8257 | 5.83 | 1350 | 0.8472 | 0.7547 | 0.7763 | 0.7547 | 0.7426 | 0.8280 |
89
+ | 1.5842 | 6.04 | 1400 | 0.8424 | 0.7601 | 0.7956 | 0.7601 | 0.7487 | 0.8327 |
90
+ | 1.5842 | 6.26 | 1450 | 0.7802 | 0.7642 | 0.7846 | 0.7642 | 0.7513 | 0.8348 |
91
+ | 1.5842 | 6.47 | 1500 | 0.7447 | 0.7965 | 0.8096 | 0.7965 | 0.7914 | 0.8574 |
92
+ | 1.5842 | 6.69 | 1550 | 0.7081 | 0.7844 | 0.8035 | 0.7844 | 0.7772 | 0.8499 |
93
+ | 1.5842 | 6.9 | 1600 | 0.7616 | 0.7722 | 0.7995 | 0.7722 | 0.7681 | 0.8399 |
94
+ | 1.4387 | 7.12 | 1650 | 0.7133 | 0.7709 | 0.7904 | 0.7709 | 0.7607 | 0.8403 |
95
+ | 1.4387 | 7.34 | 1700 | 0.6570 | 0.8127 | 0.8301 | 0.8127 | 0.8094 | 0.8695 |
96
+ | 1.4387 | 7.55 | 1750 | 0.6325 | 0.8221 | 0.8461 | 0.8221 | 0.8212 | 0.8761 |
97
+ | 1.4387 | 7.77 | 1800 | 0.6352 | 0.8032 | 0.8251 | 0.8032 | 0.8004 | 0.8625 |
98
+ | 1.4387 | 7.98 | 1850 | 0.6313 | 0.8086 | 0.8270 | 0.8086 | 0.8040 | 0.8678 |
99
+ | 1.3174 | 8.2 | 1900 | 0.6843 | 0.8154 | 0.8372 | 0.8154 | 0.8100 | 0.8710 |
100
+ | 1.3174 | 8.41 | 1950 | 0.6142 | 0.8194 | 0.8360 | 0.8194 | 0.8153 | 0.8739 |
101
+ | 1.3174 | 8.63 | 2000 | 0.6324 | 0.8154 | 0.8229 | 0.8154 | 0.8102 | 0.8710 |
102
+ | 1.3174 | 8.85 | 2050 | 0.5751 | 0.8383 | 0.8566 | 0.8383 | 0.8351 | 0.8852 |
103
+ | 1.2131 | 9.06 | 2100 | 0.5873 | 0.8275 | 0.8439 | 0.8275 | 0.8250 | 0.8805 |
104
+ | 1.2131 | 9.28 | 2150 | 0.6016 | 0.8167 | 0.8346 | 0.8167 | 0.8131 | 0.8729 |
105
+ | 1.2131 | 9.49 | 2200 | 0.5982 | 0.8410 | 0.8617 | 0.8410 | 0.8387 | 0.8879 |
106
+ | 1.2131 | 9.71 | 2250 | 0.5490 | 0.8437 | 0.8564 | 0.8437 | 0.8410 | 0.8912 |
107
+ | 1.2131 | 9.92 | 2300 | 0.5587 | 0.8342 | 0.8537 | 0.8342 | 0.8309 | 0.8837 |
108
+ | 1.1426 | 10.14 | 2350 | 0.5969 | 0.8261 | 0.8446 | 0.8261 | 0.8214 | 0.8790 |
109
+ | 1.1426 | 10.36 | 2400 | 0.5936 | 0.8410 | 0.8575 | 0.8410 | 0.8382 | 0.8889 |
110
+ | 1.1426 | 10.57 | 2450 | 0.5656 | 0.8383 | 0.8579 | 0.8383 | 0.8364 | 0.8865 |
111
+ | 1.1426 | 10.79 | 2500 | 0.5130 | 0.8625 | 0.8756 | 0.8625 | 0.8593 | 0.9054 |
112
+ | 1.0738 | 11.0 | 2550 | 0.5832 | 0.8396 | 0.8618 | 0.8396 | 0.8389 | 0.8880 |
113
+ | 1.0738 | 11.22 | 2600 | 0.5554 | 0.8423 | 0.8634 | 0.8423 | 0.8417 | 0.8908 |
114
+ | 1.0738 | 11.43 | 2650 | 0.5763 | 0.8275 | 0.8490 | 0.8275 | 0.8238 | 0.8801 |
115
+ | 1.0738 | 11.65 | 2700 | 0.5697 | 0.8329 | 0.8452 | 0.8329 | 0.8281 | 0.8857 |
116
+ | 1.0738 | 11.87 | 2750 | 0.5413 | 0.8464 | 0.8655 | 0.8464 | 0.8432 | 0.8922 |
117
+ | 1.0326 | 12.08 | 2800 | 0.5954 | 0.8235 | 0.8443 | 0.8235 | 0.8176 | 0.8761 |
118
+ | 1.0326 | 12.3 | 2850 | 0.5665 | 0.8410 | 0.8611 | 0.8410 | 0.8354 | 0.8908 |
 
 
 
119
 
120
 
121
  ### Framework versions
runs/Jun28_11-46-17_LAPTOP-1GID9RGH/events.out.tfevents.1719549979.LAPTOP-1GID9RGH.1516.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b156fd8b56c9015aee78370c1f8f899a654cd5baeec4f61fd496db827126f11
3
- size 37269
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:594d66b61b638d52c6ab92dcb664480ab5aa92b0e161a7e1415871158fae56bd
3
+ size 41910
runs/Jun28_11-46-17_LAPTOP-1GID9RGH/events.out.tfevents.1719551299.LAPTOP-1GID9RGH.1516.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8619b7e7968bbb492224398d3e4b277ff894b6be7cdadd6c4c21539e18eb6492
3
+ size 610