fydhfzh commited on
Commit
db53f88
1 Parent(s): 7d4e787

End of training

Browse files
README.md CHANGED
@@ -20,12 +20,12 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.6722
24
- - Accuracy: 0.8706
25
- - Precision: 0.8828
26
- - Recall: 0.8706
27
- - F1: 0.8708
28
- - Binary: 0.9097
29
 
30
  ## Model description
31
 
@@ -53,137 +53,110 @@ The following hyperparameters were used during training:
53
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
  - lr_scheduler_type: linear
55
  - lr_scheduler_warmup_steps: 500
56
- - num_epochs: 30
57
  - mixed_precision_training: Native AMP
58
 
59
  ### Training results
60
 
61
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
62
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
63
- | No log | 0.24 | 50 | 4.4197 | 0.0210 | 0.0174 | 0.0210 | 0.0057 | 0.1713 |
64
- | No log | 0.48 | 100 | 4.2999 | 0.0479 | 0.0457 | 0.0479 | 0.0233 | 0.3186 |
65
- | No log | 0.72 | 150 | 3.9495 | 0.0517 | 0.0304 | 0.0517 | 0.0221 | 0.3297 |
66
- | No log | 0.96 | 200 | 3.6566 | 0.0779 | 0.0264 | 0.0779 | 0.0319 | 0.3483 |
67
- | 4.2316 | 1.2 | 250 | 3.4461 | 0.0944 | 0.0410 | 0.0944 | 0.0381 | 0.3633 |
68
- | 4.2316 | 1.44 | 300 | 3.2464 | 0.1266 | 0.0635 | 0.1266 | 0.0624 | 0.3869 |
69
- | 4.2316 | 1.68 | 350 | 3.0578 | 0.1476 | 0.0942 | 0.1476 | 0.0816 | 0.3983 |
70
- | 4.2316 | 1.92 | 400 | 2.7652 | 0.2210 | 0.1506 | 0.2210 | 0.1354 | 0.4527 |
71
- | 3.3453 | 2.16 | 450 | 2.4759 | 0.3026 | 0.2342 | 0.3026 | 0.2120 | 0.5108 |
72
- | 3.3453 | 2.4 | 500 | 2.1916 | 0.3925 | 0.3092 | 0.3925 | 0.3043 | 0.5742 |
73
- | 3.3453 | 2.63 | 550 | 1.9549 | 0.4524 | 0.3866 | 0.4524 | 0.3861 | 0.6169 |
74
- | 3.3453 | 2.87 | 600 | 1.7926 | 0.4891 | 0.4796 | 0.4891 | 0.4231 | 0.6419 |
75
- | 2.4259 | 3.11 | 650 | 1.5900 | 0.5700 | 0.5456 | 0.5700 | 0.5217 | 0.6991 |
76
- | 2.4259 | 3.35 | 700 | 1.3724 | 0.6180 | 0.6275 | 0.6180 | 0.5730 | 0.7328 |
77
- | 2.4259 | 3.59 | 750 | 1.2748 | 0.6502 | 0.6406 | 0.6502 | 0.6102 | 0.7560 |
78
- | 2.4259 | 3.83 | 800 | 1.1681 | 0.6704 | 0.6791 | 0.6704 | 0.6384 | 0.7703 |
79
- | 1.7305 | 4.07 | 850 | 1.0720 | 0.7139 | 0.7255 | 0.7139 | 0.6889 | 0.8001 |
80
- | 1.7305 | 4.31 | 900 | 1.0337 | 0.7146 | 0.7298 | 0.7146 | 0.6921 | 0.7993 |
81
- | 1.7305 | 4.55 | 950 | 0.9137 | 0.7423 | 0.7541 | 0.7423 | 0.7231 | 0.8199 |
82
- | 1.7305 | 4.79 | 1000 | 0.8462 | 0.7633 | 0.7716 | 0.7633 | 0.7494 | 0.8345 |
83
- | 1.3376 | 5.03 | 1050 | 0.8048 | 0.7790 | 0.7985 | 0.7790 | 0.7685 | 0.8462 |
84
- | 1.3376 | 5.27 | 1100 | 0.7739 | 0.7850 | 0.7900 | 0.7850 | 0.7706 | 0.8493 |
85
- | 1.3376 | 5.51 | 1150 | 0.7713 | 0.7955 | 0.8096 | 0.7955 | 0.7892 | 0.8569 |
86
- | 1.3376 | 5.75 | 1200 | 0.7841 | 0.7925 | 0.8059 | 0.7925 | 0.7866 | 0.8550 |
87
- | 1.3376 | 5.99 | 1250 | 0.7026 | 0.8007 | 0.8249 | 0.8007 | 0.7966 | 0.8609 |
88
- | 1.0806 | 6.23 | 1300 | 0.6965 | 0.8112 | 0.8240 | 0.8112 | 0.8078 | 0.8685 |
89
- | 1.0806 | 6.47 | 1350 | 0.6891 | 0.8142 | 0.8312 | 0.8142 | 0.8097 | 0.8697 |
90
- | 1.0806 | 6.71 | 1400 | 0.6624 | 0.8262 | 0.8387 | 0.8262 | 0.8214 | 0.8781 |
91
- | 1.0806 | 6.95 | 1450 | 0.6302 | 0.8337 | 0.8441 | 0.8337 | 0.8299 | 0.8834 |
92
- | 0.9458 | 7.19 | 1500 | 0.6213 | 0.8367 | 0.8468 | 0.8367 | 0.8321 | 0.8854 |
93
- | 0.9458 | 7.43 | 1550 | 0.6815 | 0.8195 | 0.8331 | 0.8195 | 0.8155 | 0.8738 |
94
- | 0.9458 | 7.66 | 1600 | 0.6206 | 0.8427 | 0.8538 | 0.8427 | 0.8408 | 0.8902 |
95
- | 0.9458 | 7.9 | 1650 | 0.5314 | 0.8577 | 0.8687 | 0.8577 | 0.8556 | 0.9007 |
96
- | 0.8202 | 8.14 | 1700 | 0.5861 | 0.8390 | 0.8505 | 0.8390 | 0.8369 | 0.8874 |
97
- | 0.8202 | 8.38 | 1750 | 0.5927 | 0.8532 | 0.8661 | 0.8532 | 0.8519 | 0.8975 |
98
- | 0.8202 | 8.62 | 1800 | 0.6158 | 0.8449 | 0.8592 | 0.8449 | 0.8420 | 0.8919 |
99
- | 0.8202 | 8.86 | 1850 | 0.5726 | 0.8457 | 0.8569 | 0.8457 | 0.8416 | 0.8918 |
100
- | 0.7454 | 9.1 | 1900 | 0.6392 | 0.8360 | 0.8528 | 0.8360 | 0.8315 | 0.8858 |
101
- | 0.7454 | 9.34 | 1950 | 0.5566 | 0.8577 | 0.8710 | 0.8577 | 0.8569 | 0.9006 |
102
- | 0.7454 | 9.58 | 2000 | 0.5260 | 0.8592 | 0.8693 | 0.8592 | 0.8561 | 0.9010 |
103
- | 0.7454 | 9.82 | 2050 | 0.5470 | 0.8659 | 0.8760 | 0.8659 | 0.8651 | 0.9058 |
104
- | 0.6472 | 10.06 | 2100 | 0.5692 | 0.8554 | 0.8643 | 0.8554 | 0.8541 | 0.9001 |
105
- | 0.6472 | 10.3 | 2150 | 0.5730 | 0.8599 | 0.8683 | 0.8599 | 0.8574 | 0.9016 |
106
- | 0.6472 | 10.54 | 2200 | 0.5408 | 0.8637 | 0.8715 | 0.8637 | 0.8619 | 0.9048 |
107
- | 0.6472 | 10.78 | 2250 | 0.5869 | 0.8652 | 0.8739 | 0.8652 | 0.8635 | 0.9052 |
108
- | 0.6204 | 11.02 | 2300 | 0.6284 | 0.8539 | 0.8638 | 0.8539 | 0.8511 | 0.8985 |
109
- | 0.6204 | 11.26 | 2350 | 0.5792 | 0.8599 | 0.8674 | 0.8599 | 0.8565 | 0.9024 |
110
- | 0.6204 | 11.5 | 2400 | 0.6085 | 0.8592 | 0.8704 | 0.8592 | 0.8568 | 0.9011 |
111
- | 0.6204 | 11.74 | 2450 | 0.6259 | 0.8517 | 0.8590 | 0.8517 | 0.8493 | 0.8958 |
112
- | 0.6204 | 11.98 | 2500 | 0.6429 | 0.8494 | 0.8634 | 0.8494 | 0.8474 | 0.8945 |
113
- | 0.5797 | 12.22 | 2550 | 0.6478 | 0.8502 | 0.8596 | 0.8502 | 0.8480 | 0.8960 |
114
- | 0.5797 | 12.46 | 2600 | 0.5734 | 0.8652 | 0.8737 | 0.8652 | 0.8619 | 0.9055 |
115
- | 0.5797 | 12.69 | 2650 | 0.6109 | 0.8569 | 0.8667 | 0.8569 | 0.8528 | 0.9003 |
116
- | 0.5797 | 12.93 | 2700 | 0.5982 | 0.8652 | 0.8784 | 0.8652 | 0.8632 | 0.9058 |
117
- | 0.542 | 13.17 | 2750 | 0.6024 | 0.8539 | 0.8655 | 0.8539 | 0.8527 | 0.8975 |
118
- | 0.542 | 13.41 | 2800 | 0.5819 | 0.8629 | 0.8707 | 0.8629 | 0.8609 | 0.9056 |
119
- | 0.542 | 13.65 | 2850 | 0.5870 | 0.8689 | 0.8781 | 0.8689 | 0.8680 | 0.9085 |
120
- | 0.542 | 13.89 | 2900 | 0.5818 | 0.8637 | 0.8710 | 0.8637 | 0.8619 | 0.9042 |
121
- | 0.5116 | 14.13 | 2950 | 0.5965 | 0.8599 | 0.8709 | 0.8599 | 0.8590 | 0.9035 |
122
- | 0.5116 | 14.37 | 3000 | 0.6023 | 0.8607 | 0.8675 | 0.8607 | 0.8581 | 0.9029 |
123
- | 0.5116 | 14.61 | 3050 | 0.6432 | 0.8637 | 0.8745 | 0.8637 | 0.8620 | 0.9040 |
124
- | 0.5116 | 14.85 | 3100 | 0.6255 | 0.8584 | 0.8703 | 0.8584 | 0.8574 | 0.9014 |
125
- | 0.4756 | 15.09 | 3150 | 0.6000 | 0.8629 | 0.8710 | 0.8629 | 0.8615 | 0.9040 |
126
- | 0.4756 | 15.33 | 3200 | 0.6462 | 0.8689 | 0.8793 | 0.8689 | 0.8682 | 0.9082 |
127
- | 0.4756 | 15.57 | 3250 | 0.6419 | 0.8539 | 0.8641 | 0.8539 | 0.8518 | 0.8984 |
128
- | 0.4756 | 15.81 | 3300 | 0.6592 | 0.8569 | 0.8624 | 0.8569 | 0.8538 | 0.9012 |
129
- | 0.4492 | 16.05 | 3350 | 0.6195 | 0.8607 | 0.8687 | 0.8607 | 0.8591 | 0.9034 |
130
- | 0.4492 | 16.29 | 3400 | 0.6042 | 0.8697 | 0.8803 | 0.8697 | 0.8687 | 0.9090 |
131
- | 0.4492 | 16.53 | 3450 | 0.6235 | 0.8562 | 0.8664 | 0.8562 | 0.8544 | 0.8998 |
132
- | 0.4492 | 16.77 | 3500 | 0.6332 | 0.8674 | 0.8756 | 0.8674 | 0.8659 | 0.9069 |
133
- | 0.4383 | 17.01 | 3550 | 0.6278 | 0.8584 | 0.8661 | 0.8584 | 0.8566 | 0.9011 |
134
- | 0.4383 | 17.25 | 3600 | 0.5924 | 0.8719 | 0.8806 | 0.8719 | 0.8709 | 0.9100 |
135
- | 0.4383 | 17.49 | 3650 | 0.6176 | 0.8712 | 0.8817 | 0.8712 | 0.8696 | 0.9105 |
136
- | 0.4383 | 17.72 | 3700 | 0.6186 | 0.8712 | 0.8788 | 0.8712 | 0.8694 | 0.9106 |
137
- | 0.4383 | 17.96 | 3750 | 0.6185 | 0.8749 | 0.8849 | 0.8749 | 0.8736 | 0.9124 |
138
- | 0.4249 | 18.2 | 3800 | 0.6101 | 0.8742 | 0.8820 | 0.8742 | 0.8735 | 0.9116 |
139
- | 0.4249 | 18.44 | 3850 | 0.6121 | 0.8689 | 0.8802 | 0.8689 | 0.8682 | 0.9085 |
140
- | 0.4249 | 18.68 | 3900 | 0.6568 | 0.8614 | 0.8719 | 0.8614 | 0.8599 | 0.9031 |
141
- | 0.4249 | 18.92 | 3950 | 0.6292 | 0.8697 | 0.8797 | 0.8697 | 0.8688 | 0.9091 |
142
- | 0.4073 | 19.16 | 4000 | 0.6200 | 0.8719 | 0.8822 | 0.8719 | 0.8702 | 0.9103 |
143
- | 0.4073 | 19.4 | 4050 | 0.6544 | 0.8644 | 0.8740 | 0.8644 | 0.8635 | 0.9052 |
144
- | 0.4073 | 19.64 | 4100 | 0.6441 | 0.8652 | 0.8731 | 0.8652 | 0.8639 | 0.9061 |
145
- | 0.4073 | 19.88 | 4150 | 0.6056 | 0.8779 | 0.8836 | 0.8779 | 0.8764 | 0.9146 |
146
- | 0.3797 | 20.12 | 4200 | 0.6192 | 0.8742 | 0.8815 | 0.8742 | 0.8728 | 0.9117 |
147
- | 0.3797 | 20.36 | 4250 | 0.5936 | 0.8787 | 0.8864 | 0.8787 | 0.8775 | 0.9156 |
148
- | 0.3797 | 20.6 | 4300 | 0.6288 | 0.8749 | 0.8836 | 0.8749 | 0.8736 | 0.9124 |
149
- | 0.3797 | 20.84 | 4350 | 0.6280 | 0.8734 | 0.8812 | 0.8734 | 0.8717 | 0.9116 |
150
- | 0.3727 | 21.08 | 4400 | 0.6542 | 0.8712 | 0.8782 | 0.8712 | 0.8694 | 0.9097 |
151
- | 0.3727 | 21.32 | 4450 | 0.6506 | 0.8667 | 0.8761 | 0.8667 | 0.8643 | 0.9063 |
152
- | 0.3727 | 21.56 | 4500 | 0.6217 | 0.8727 | 0.8789 | 0.8727 | 0.8707 | 0.9105 |
153
- | 0.3727 | 21.8 | 4550 | 0.6120 | 0.8779 | 0.8836 | 0.8779 | 0.8769 | 0.9142 |
154
- | 0.3495 | 22.04 | 4600 | 0.6275 | 0.8704 | 0.8786 | 0.8704 | 0.8689 | 0.9092 |
155
- | 0.3495 | 22.28 | 4650 | 0.6258 | 0.8794 | 0.8862 | 0.8794 | 0.8777 | 0.9153 |
156
- | 0.3495 | 22.51 | 4700 | 0.6255 | 0.8682 | 0.8770 | 0.8682 | 0.8663 | 0.9079 |
157
- | 0.3495 | 22.75 | 4750 | 0.6442 | 0.8689 | 0.8772 | 0.8689 | 0.8667 | 0.9085 |
158
- | 0.3495 | 22.99 | 4800 | 0.6274 | 0.8727 | 0.8816 | 0.8727 | 0.8716 | 0.9109 |
159
- | 0.3363 | 23.23 | 4850 | 0.6241 | 0.8712 | 0.8783 | 0.8712 | 0.8693 | 0.9103 |
160
- | 0.3363 | 23.47 | 4900 | 0.5921 | 0.8824 | 0.8886 | 0.8824 | 0.8811 | 0.9175 |
161
- | 0.3363 | 23.71 | 4950 | 0.6452 | 0.8749 | 0.8832 | 0.8749 | 0.8732 | 0.9124 |
162
- | 0.3363 | 23.95 | 5000 | 0.6247 | 0.8757 | 0.8851 | 0.8757 | 0.8739 | 0.9129 |
163
- | 0.3218 | 24.19 | 5050 | 0.6176 | 0.8816 | 0.8897 | 0.8816 | 0.8797 | 0.9173 |
164
- | 0.3218 | 24.43 | 5100 | 0.6232 | 0.8772 | 0.8846 | 0.8772 | 0.8753 | 0.9139 |
165
- | 0.3218 | 24.67 | 5150 | 0.6267 | 0.8757 | 0.8833 | 0.8757 | 0.8742 | 0.9131 |
166
- | 0.3218 | 24.91 | 5200 | 0.6109 | 0.8749 | 0.8825 | 0.8749 | 0.8736 | 0.9124 |
167
- | 0.3173 | 25.15 | 5250 | 0.6192 | 0.8801 | 0.8878 | 0.8801 | 0.8786 | 0.9160 |
168
- | 0.3173 | 25.39 | 5300 | 0.6303 | 0.8764 | 0.8853 | 0.8764 | 0.8750 | 0.9134 |
169
- | 0.3173 | 25.63 | 5350 | 0.6552 | 0.8742 | 0.8818 | 0.8742 | 0.8726 | 0.9115 |
170
- | 0.3173 | 25.87 | 5400 | 0.6291 | 0.8712 | 0.8782 | 0.8712 | 0.8697 | 0.9094 |
171
- | 0.316 | 26.11 | 5450 | 0.6041 | 0.8816 | 0.8874 | 0.8816 | 0.8805 | 0.9169 |
172
- | 0.316 | 26.35 | 5500 | 0.6254 | 0.8809 | 0.8887 | 0.8809 | 0.8792 | 0.9166 |
173
- | 0.316 | 26.59 | 5550 | 0.6147 | 0.8801 | 0.8868 | 0.8801 | 0.8789 | 0.9160 |
174
- | 0.316 | 26.83 | 5600 | 0.6255 | 0.8794 | 0.8866 | 0.8794 | 0.8780 | 0.9155 |
175
- | 0.2917 | 27.07 | 5650 | 0.5997 | 0.8824 | 0.8893 | 0.8824 | 0.8811 | 0.9173 |
176
- | 0.2917 | 27.31 | 5700 | 0.5993 | 0.8831 | 0.8906 | 0.8831 | 0.8817 | 0.9181 |
177
- | 0.2917 | 27.54 | 5750 | 0.6007 | 0.8809 | 0.8889 | 0.8809 | 0.8796 | 0.9166 |
178
- | 0.2917 | 27.78 | 5800 | 0.6041 | 0.8787 | 0.8871 | 0.8787 | 0.8772 | 0.9152 |
179
- | 0.2896 | 28.02 | 5850 | 0.5977 | 0.8854 | 0.8921 | 0.8854 | 0.8844 | 0.9196 |
180
- | 0.2896 | 28.26 | 5900 | 0.5875 | 0.8869 | 0.8937 | 0.8869 | 0.8858 | 0.9210 |
181
- | 0.2896 | 28.5 | 5950 | 0.6133 | 0.8764 | 0.8843 | 0.8764 | 0.8750 | 0.9136 |
182
- | 0.2896 | 28.74 | 6000 | 0.6153 | 0.8794 | 0.8874 | 0.8794 | 0.8783 | 0.9157 |
183
- | 0.2896 | 28.98 | 6050 | 0.6031 | 0.8816 | 0.8891 | 0.8816 | 0.8799 | 0.9173 |
184
- | 0.2821 | 29.22 | 6100 | 0.6034 | 0.8839 | 0.8908 | 0.8839 | 0.8823 | 0.9189 |
185
- | 0.2821 | 29.46 | 6150 | 0.6003 | 0.8831 | 0.8895 | 0.8831 | 0.8815 | 0.9184 |
186
- | 0.2821 | 29.7 | 6200 | 0.6013 | 0.8846 | 0.8911 | 0.8846 | 0.8832 | 0.9194 |
187
 
188
 
189
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.5873
24
+ - Accuracy: 0.8787
25
+ - Precision: 0.8925
26
+ - Recall: 0.8787
27
+ - F1: 0.8784
28
+ - Binary: 0.9162
29
 
30
  ## Model description
31
 
 
53
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
  - lr_scheduler_type: linear
55
  - lr_scheduler_warmup_steps: 500
56
+ - num_epochs: 100
57
  - mixed_precision_training: Native AMP
58
 
59
  ### Training results
60
 
61
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
62
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
63
+ | No log | 0.24 | 50 | 4.4206 | 0.0195 | 0.0007 | 0.0195 | 0.0014 | 0.1390 |
64
+ | No log | 0.48 | 100 | 4.3006 | 0.0442 | 0.0114 | 0.0442 | 0.0127 | 0.2528 |
65
+ | No log | 0.72 | 150 | 3.9867 | 0.0472 | 0.0033 | 0.0472 | 0.0061 | 0.3276 |
66
+ | No log | 0.96 | 200 | 3.6925 | 0.0712 | 0.0116 | 0.0712 | 0.0180 | 0.3447 |
67
+ | 4.2438 | 1.2 | 250 | 3.4305 | 0.0854 | 0.0508 | 0.0854 | 0.0319 | 0.3580 |
68
+ | 4.2438 | 1.44 | 300 | 3.2405 | 0.1071 | 0.0689 | 0.1071 | 0.0432 | 0.3730 |
69
+ | 4.2438 | 1.68 | 350 | 3.0535 | 0.1491 | 0.1053 | 0.1491 | 0.0823 | 0.3999 |
70
+ | 4.2438 | 1.92 | 400 | 2.7897 | 0.2419 | 0.2020 | 0.2419 | 0.1678 | 0.4667 |
71
+ | 3.3411 | 2.16 | 450 | 2.4987 | 0.3303 | 0.2416 | 0.3303 | 0.2457 | 0.5288 |
72
+ | 3.3411 | 2.4 | 500 | 2.1588 | 0.4779 | 0.3998 | 0.4779 | 0.4078 | 0.6354 |
73
+ | 3.3411 | 2.63 | 550 | 1.8909 | 0.5273 | 0.4768 | 0.5273 | 0.4604 | 0.6688 |
74
+ | 3.3411 | 2.87 | 600 | 1.6458 | 0.5708 | 0.5612 | 0.5708 | 0.5191 | 0.6994 |
75
+ | 2.4102 | 3.11 | 650 | 1.4630 | 0.6187 | 0.6002 | 0.6187 | 0.5757 | 0.7327 |
76
+ | 2.4102 | 3.35 | 700 | 1.2770 | 0.6764 | 0.6582 | 0.6764 | 0.6409 | 0.7730 |
77
+ | 2.4102 | 3.59 | 750 | 1.1875 | 0.6966 | 0.6830 | 0.6966 | 0.6696 | 0.7884 |
78
+ | 2.4102 | 3.83 | 800 | 1.0563 | 0.7228 | 0.7372 | 0.7228 | 0.7012 | 0.8073 |
79
+ | 1.6409 | 4.07 | 850 | 0.9471 | 0.7506 | 0.7688 | 0.7506 | 0.7322 | 0.8260 |
80
+ | 1.6409 | 4.31 | 900 | 0.9012 | 0.7588 | 0.7677 | 0.7588 | 0.7471 | 0.8313 |
81
+ | 1.6409 | 4.55 | 950 | 0.8540 | 0.7768 | 0.8025 | 0.7768 | 0.7685 | 0.8435 |
82
+ | 1.6409 | 4.79 | 1000 | 0.7910 | 0.7828 | 0.7915 | 0.7828 | 0.7723 | 0.8479 |
83
+ | 1.2621 | 5.03 | 1050 | 0.7229 | 0.7918 | 0.7952 | 0.7918 | 0.7804 | 0.8542 |
84
+ | 1.2621 | 5.27 | 1100 | 0.7388 | 0.8067 | 0.8250 | 0.8067 | 0.8031 | 0.8650 |
85
+ | 1.2621 | 5.51 | 1150 | 0.7315 | 0.8090 | 0.8298 | 0.8090 | 0.8029 | 0.8672 |
86
+ | 1.2621 | 5.75 | 1200 | 0.7357 | 0.7903 | 0.8053 | 0.7903 | 0.7856 | 0.8533 |
87
+ | 1.2621 | 5.99 | 1250 | 0.7088 | 0.8090 | 0.8240 | 0.8090 | 0.8037 | 0.8672 |
88
+ | 1.0138 | 6.23 | 1300 | 0.6828 | 0.8112 | 0.8209 | 0.8112 | 0.8077 | 0.8684 |
89
+ | 1.0138 | 6.47 | 1350 | 0.7561 | 0.8082 | 0.8229 | 0.8082 | 0.8032 | 0.8678 |
90
+ | 1.0138 | 6.71 | 1400 | 0.6640 | 0.8292 | 0.8415 | 0.8292 | 0.8250 | 0.8812 |
91
+ | 1.0138 | 6.95 | 1450 | 0.6330 | 0.8315 | 0.8453 | 0.8315 | 0.8282 | 0.8828 |
92
+ | 0.9058 | 7.19 | 1500 | 0.6482 | 0.8217 | 0.8331 | 0.8217 | 0.8189 | 0.8764 |
93
+ | 0.9058 | 7.43 | 1550 | 0.7005 | 0.8187 | 0.8330 | 0.8187 | 0.8135 | 0.8736 |
94
+ | 0.9058 | 7.66 | 1600 | 0.5902 | 0.8562 | 0.8645 | 0.8562 | 0.8533 | 0.8998 |
95
+ | 0.9058 | 7.9 | 1650 | 0.5481 | 0.8607 | 0.8723 | 0.8607 | 0.8594 | 0.9019 |
96
+ | 0.7905 | 8.14 | 1700 | 0.6131 | 0.8427 | 0.8534 | 0.8427 | 0.8394 | 0.8899 |
97
+ | 0.7905 | 8.38 | 1750 | 0.6664 | 0.8419 | 0.8541 | 0.8419 | 0.8394 | 0.8897 |
98
+ | 0.7905 | 8.62 | 1800 | 0.6453 | 0.8330 | 0.8473 | 0.8330 | 0.8293 | 0.8842 |
99
+ | 0.7905 | 8.86 | 1850 | 0.6178 | 0.8390 | 0.8553 | 0.8390 | 0.8362 | 0.8873 |
100
+ | 0.7208 | 9.1 | 1900 | 0.6779 | 0.8412 | 0.8540 | 0.8412 | 0.8379 | 0.8895 |
101
+ | 0.7208 | 9.34 | 1950 | 0.5752 | 0.8607 | 0.8690 | 0.8607 | 0.8581 | 0.9031 |
102
+ | 0.7208 | 9.58 | 2000 | 0.6717 | 0.8434 | 0.8544 | 0.8434 | 0.8408 | 0.8909 |
103
+ | 0.7208 | 9.82 | 2050 | 0.6790 | 0.8345 | 0.8500 | 0.8345 | 0.8321 | 0.8848 |
104
+ | 0.6476 | 10.06 | 2100 | 0.6429 | 0.8494 | 0.8631 | 0.8494 | 0.8472 | 0.8954 |
105
+ | 0.6476 | 10.3 | 2150 | 0.6006 | 0.8577 | 0.8668 | 0.8577 | 0.8558 | 0.9007 |
106
+ | 0.6476 | 10.54 | 2200 | 0.5987 | 0.8532 | 0.8634 | 0.8532 | 0.8519 | 0.8974 |
107
+ | 0.6476 | 10.78 | 2250 | 0.6524 | 0.8472 | 0.8594 | 0.8472 | 0.8443 | 0.8934 |
108
+ | 0.6156 | 11.02 | 2300 | 0.6748 | 0.8412 | 0.8529 | 0.8412 | 0.8386 | 0.8904 |
109
+ | 0.6156 | 11.26 | 2350 | 0.5571 | 0.8577 | 0.8644 | 0.8577 | 0.8547 | 0.9011 |
110
+ | 0.6156 | 11.5 | 2400 | 0.6081 | 0.8502 | 0.8607 | 0.8502 | 0.8468 | 0.8959 |
111
+ | 0.6156 | 11.74 | 2450 | 0.5866 | 0.8592 | 0.8692 | 0.8592 | 0.8575 | 0.9022 |
112
+ | 0.6156 | 11.98 | 2500 | 0.6205 | 0.8517 | 0.8630 | 0.8517 | 0.8501 | 0.8966 |
113
+ | 0.5738 | 12.22 | 2550 | 0.6544 | 0.8562 | 0.8704 | 0.8562 | 0.8549 | 0.8996 |
114
+ | 0.5738 | 12.46 | 2600 | 0.6792 | 0.8427 | 0.8545 | 0.8427 | 0.8385 | 0.8906 |
115
+ | 0.5738 | 12.69 | 2650 | 0.6009 | 0.8569 | 0.8676 | 0.8569 | 0.8557 | 0.9008 |
116
+ | 0.5738 | 12.93 | 2700 | 0.6580 | 0.8524 | 0.8621 | 0.8524 | 0.8490 | 0.8972 |
117
+ | 0.5416 | 13.17 | 2750 | 0.6781 | 0.8532 | 0.8639 | 0.8532 | 0.8504 | 0.8977 |
118
+ | 0.5416 | 13.41 | 2800 | 0.5903 | 0.8659 | 0.8749 | 0.8659 | 0.8646 | 0.9084 |
119
+ | 0.5416 | 13.65 | 2850 | 0.5766 | 0.8644 | 0.8728 | 0.8644 | 0.8620 | 0.9064 |
120
+ | 0.5416 | 13.89 | 2900 | 0.6674 | 0.8592 | 0.8688 | 0.8592 | 0.8565 | 0.9027 |
121
+ | 0.5213 | 14.13 | 2950 | 0.6256 | 0.8652 | 0.8751 | 0.8652 | 0.8635 | 0.9067 |
122
+ | 0.5213 | 14.37 | 3000 | 0.6518 | 0.8622 | 0.8704 | 0.8622 | 0.8602 | 0.9051 |
123
+ | 0.5213 | 14.61 | 3050 | 0.6694 | 0.8547 | 0.8661 | 0.8547 | 0.8531 | 0.8999 |
124
+ | 0.5213 | 14.85 | 3100 | 0.6153 | 0.8719 | 0.8799 | 0.8719 | 0.8710 | 0.9125 |
125
+ | 0.4856 | 15.09 | 3150 | 0.6067 | 0.8727 | 0.8821 | 0.8727 | 0.8715 | 0.9106 |
126
+ | 0.4856 | 15.33 | 3200 | 0.6354 | 0.8592 | 0.8712 | 0.8592 | 0.8581 | 0.9019 |
127
+ | 0.4856 | 15.57 | 3250 | 0.6773 | 0.8532 | 0.8623 | 0.8532 | 0.8507 | 0.8988 |
128
+ | 0.4856 | 15.81 | 3300 | 0.6356 | 0.8682 | 0.8759 | 0.8682 | 0.8660 | 0.9088 |
129
+ | 0.4631 | 16.05 | 3350 | 0.6139 | 0.8712 | 0.8783 | 0.8712 | 0.8700 | 0.9102 |
130
+ | 0.4631 | 16.29 | 3400 | 0.6589 | 0.8622 | 0.8730 | 0.8622 | 0.8612 | 0.9049 |
131
+ | 0.4631 | 16.53 | 3450 | 0.6439 | 0.8539 | 0.8660 | 0.8539 | 0.8516 | 0.8982 |
132
+ | 0.4631 | 16.77 | 3500 | 0.6727 | 0.8689 | 0.8757 | 0.8689 | 0.8673 | 0.9091 |
133
+ | 0.4605 | 17.01 | 3550 | 0.6359 | 0.8712 | 0.8793 | 0.8712 | 0.8703 | 0.9103 |
134
+ | 0.4605 | 17.25 | 3600 | 0.6926 | 0.8547 | 0.8647 | 0.8547 | 0.8534 | 0.8999 |
135
+ | 0.4605 | 17.49 | 3650 | 0.6937 | 0.8562 | 0.8687 | 0.8562 | 0.8544 | 0.9008 |
136
+ | 0.4605 | 17.72 | 3700 | 0.6625 | 0.8659 | 0.8777 | 0.8659 | 0.8649 | 0.9068 |
137
+ | 0.4605 | 17.96 | 3750 | 0.6542 | 0.8674 | 0.8784 | 0.8674 | 0.8655 | 0.9090 |
138
+ | 0.4371 | 18.2 | 3800 | 0.5719 | 0.8742 | 0.8831 | 0.8742 | 0.8727 | 0.9121 |
139
+ | 0.4371 | 18.44 | 3850 | 0.6245 | 0.8734 | 0.8811 | 0.8734 | 0.8727 | 0.9124 |
140
+ | 0.4371 | 18.68 | 3900 | 0.6993 | 0.8577 | 0.8680 | 0.8577 | 0.8559 | 0.9018 |
141
+ | 0.4371 | 18.92 | 3950 | 0.6896 | 0.8592 | 0.8681 | 0.8592 | 0.8573 | 0.9028 |
142
+ | 0.4277 | 19.16 | 4000 | 0.6869 | 0.8517 | 0.8640 | 0.8517 | 0.8507 | 0.8973 |
143
+ | 0.4277 | 19.4 | 4050 | 0.6963 | 0.8599 | 0.8692 | 0.8599 | 0.8587 | 0.9021 |
144
+ | 0.4277 | 19.64 | 4100 | 0.5527 | 0.8831 | 0.8898 | 0.8831 | 0.8819 | 0.9184 |
145
+ | 0.4277 | 19.88 | 4150 | 0.6925 | 0.8592 | 0.8699 | 0.8592 | 0.8580 | 0.9025 |
146
+ | 0.401 | 20.12 | 4200 | 0.6998 | 0.8592 | 0.8719 | 0.8592 | 0.8582 | 0.9040 |
147
+ | 0.401 | 20.36 | 4250 | 0.6390 | 0.8757 | 0.8849 | 0.8757 | 0.8743 | 0.9139 |
148
+ | 0.401 | 20.6 | 4300 | 0.6792 | 0.8659 | 0.8762 | 0.8659 | 0.8641 | 0.9075 |
149
+ | 0.401 | 20.84 | 4350 | 0.6946 | 0.8554 | 0.8662 | 0.8554 | 0.8529 | 0.8990 |
150
+ | 0.3945 | 21.08 | 4400 | 0.8223 | 0.8427 | 0.8559 | 0.8427 | 0.8409 | 0.8903 |
151
+ | 0.3945 | 21.32 | 4450 | 0.7841 | 0.8622 | 0.8710 | 0.8622 | 0.8599 | 0.9040 |
152
+ | 0.3945 | 21.56 | 4500 | 0.6545 | 0.8697 | 0.8766 | 0.8697 | 0.8687 | 0.9093 |
153
+ | 0.3945 | 21.8 | 4550 | 0.7135 | 0.8652 | 0.8710 | 0.8652 | 0.8630 | 0.9072 |
154
+ | 0.3829 | 22.04 | 4600 | 0.6901 | 0.8622 | 0.8705 | 0.8622 | 0.8610 | 0.9046 |
155
+ | 0.3829 | 22.28 | 4650 | 0.6960 | 0.8599 | 0.8688 | 0.8599 | 0.8579 | 0.9035 |
156
+ | 0.3829 | 22.51 | 4700 | 0.7047 | 0.8644 | 0.8752 | 0.8644 | 0.8630 | 0.9061 |
157
+ | 0.3829 | 22.75 | 4750 | 0.6855 | 0.8674 | 0.8784 | 0.8674 | 0.8662 | 0.9094 |
158
+ | 0.3829 | 22.99 | 4800 | 0.7315 | 0.8539 | 0.8652 | 0.8539 | 0.8516 | 0.8993 |
159
+ | 0.3695 | 23.23 | 4850 | 0.7299 | 0.8569 | 0.8663 | 0.8569 | 0.8545 | 0.9005 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
 
162
  ### Framework versions
runs/Jul27_03-26-33_LAPTOP-1GID9RGH/events.out.tfevents.1722025595.LAPTOP-1GID9RGH.2524.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:75cabc9a263690c898ee9884778cc2fbee61d46ab778066c62d6413e34cae799
3
- size 60473
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf4bbb2de88f50246a84cb088eea0a577f4443e440dd6ff350a59c41ade6c8d0
3
+ size 65114
runs/Jul27_03-26-33_LAPTOP-1GID9RGH/events.out.tfevents.1722028126.LAPTOP-1GID9RGH.2524.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8b9075c6bf025b98e313faaaf8cc22bb580b65e619557ed2aa19108de1a0253
3
+ size 610