File size: 14,637 Bytes
1113d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug-fold-1
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug-fold-1

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5653
- Accuracy: 0.8814
- Precision: 0.8996
- Recall: 0.8814
- F1: 0.8797
- Binary: 0.9213

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.19  | 50   | 4.4122          | 0.0270   | 0.0009    | 0.0270 | 0.0018 | 0.1908 |

| No log        | 0.38  | 100  | 3.8703          | 0.0485   | 0.0031    | 0.0485 | 0.0057 | 0.3057 |

| No log        | 0.58  | 150  | 3.4529          | 0.0728   | 0.0261    | 0.0728 | 0.0208 | 0.3396 |

| No log        | 0.77  | 200  | 3.3007          | 0.0701   | 0.0092    | 0.0701 | 0.0156 | 0.3385 |

| No log        | 0.96  | 250  | 3.2150          | 0.0809   | 0.0227    | 0.0809 | 0.0284 | 0.3477 |

| 3.8633        | 1.15  | 300  | 3.1101          | 0.0997   | 0.0221    | 0.0997 | 0.0330 | 0.3588 |

| 3.8633        | 1.34  | 350  | 3.0269          | 0.1132   | 0.0298    | 0.1132 | 0.0427 | 0.3704 |

| 3.8633        | 1.53  | 400  | 2.9362          | 0.1509   | 0.0640    | 0.1509 | 0.0799 | 0.3943 |

| 3.8633        | 1.73  | 450  | 2.7990          | 0.2183   | 0.1378    | 0.2183 | 0.1356 | 0.4488 |

| 3.8633        | 1.92  | 500  | 2.6316          | 0.2345   | 0.1408    | 0.2345 | 0.1447 | 0.4609 |

| 3.1477        | 2.11  | 550  | 2.4207          | 0.2911   | 0.1703    | 0.2911 | 0.1919 | 0.5027 |

| 3.1477        | 2.3   | 600  | 2.2241          | 0.3315   | 0.2375    | 0.3315 | 0.2437 | 0.5329 |

| 3.1477        | 2.49  | 650  | 2.0490          | 0.4016   | 0.3209    | 0.4016 | 0.3144 | 0.5782 |

| 3.1477        | 2.68  | 700  | 1.9507          | 0.4474   | 0.3860    | 0.4474 | 0.3751 | 0.6111 |

| 3.1477        | 2.88  | 750  | 1.7289          | 0.4987   | 0.4422    | 0.4987 | 0.4249 | 0.6469 |

| 2.5128        | 3.07  | 800  | 1.6980          | 0.5229   | 0.4922    | 0.5229 | 0.4716 | 0.6650 |

| 2.5128        | 3.26  | 850  | 1.5772          | 0.5337   | 0.4984    | 0.5337 | 0.4794 | 0.6752 |

| 2.5128        | 3.45  | 900  | 1.4601          | 0.5526   | 0.5254    | 0.5526 | 0.4960 | 0.6857 |

| 2.5128        | 3.64  | 950  | 1.3596          | 0.5984   | 0.5985    | 0.5984 | 0.5666 | 0.7175 |

| 2.5128        | 3.84  | 1000 | 1.2260          | 0.6550   | 0.7094    | 0.6550 | 0.6282 | 0.7580 |

| 2.0178        | 4.03  | 1050 | 1.2179          | 0.6334   | 0.6586    | 0.6334 | 0.5903 | 0.7429 |

| 2.0178        | 4.22  | 1100 | 1.1750          | 0.6523   | 0.6673    | 0.6523 | 0.6209 | 0.7569 |

| 2.0178        | 4.41  | 1150 | 1.1022          | 0.6927   | 0.7149    | 0.6927 | 0.6702 | 0.7852 |

| 2.0178        | 4.6   | 1200 | 1.0216          | 0.7143   | 0.7344    | 0.7143 | 0.6957 | 0.8005 |

| 2.0178        | 4.79  | 1250 | 1.0195          | 0.7008   | 0.7571    | 0.7008 | 0.6843 | 0.7908 |

| 2.0178        | 4.99  | 1300 | 1.0202          | 0.6765   | 0.6885    | 0.6765 | 0.6532 | 0.7739 |

| 1.715         | 5.18  | 1350 | 0.9848          | 0.7547   | 0.7772    | 0.7547 | 0.7378 | 0.8264 |

| 1.715         | 5.37  | 1400 | 1.0069          | 0.7385   | 0.7797    | 0.7385 | 0.7229 | 0.8146 |

| 1.715         | 5.56  | 1450 | 0.9229          | 0.7547   | 0.7937    | 0.7547 | 0.7420 | 0.8267 |

| 1.715         | 5.75  | 1500 | 0.8889          | 0.7385   | 0.7600    | 0.7385 | 0.7170 | 0.8191 |

| 1.715         | 5.94  | 1550 | 0.8469          | 0.7736   | 0.8162    | 0.7736 | 0.7670 | 0.8410 |

| 1.5024        | 6.14  | 1600 | 0.8843          | 0.7844   | 0.8278    | 0.7844 | 0.7767 | 0.8485 |

| 1.5024        | 6.33  | 1650 | 0.8125          | 0.7898   | 0.8149    | 0.7898 | 0.7797 | 0.8512 |

| 1.5024        | 6.52  | 1700 | 0.9072          | 0.7520   | 0.7806    | 0.7520 | 0.7365 | 0.8240 |

| 1.5024        | 6.71  | 1750 | 0.7896          | 0.7547   | 0.7818    | 0.7547 | 0.7398 | 0.8267 |

| 1.5024        | 6.9   | 1800 | 0.7102          | 0.8113   | 0.8396    | 0.8113 | 0.8045 | 0.8663 |

| 1.3605        | 7.09  | 1850 | 0.7241          | 0.8032   | 0.8298    | 0.8032 | 0.7930 | 0.8606 |

| 1.3605        | 7.29  | 1900 | 0.7586          | 0.8005   | 0.8323    | 0.8005 | 0.7892 | 0.8588 |

| 1.3605        | 7.48  | 1950 | 0.7546          | 0.7898   | 0.8105    | 0.7898 | 0.7759 | 0.8512 |

| 1.3605        | 7.67  | 2000 | 0.7103          | 0.8032   | 0.8242    | 0.8032 | 0.7893 | 0.8606 |

| 1.3605        | 7.86  | 2050 | 0.7397          | 0.8140   | 0.8239    | 0.8140 | 0.7982 | 0.8682 |

| 1.2475        | 8.05  | 2100 | 0.7723          | 0.8059   | 0.8207    | 0.8059 | 0.7894 | 0.8636 |

| 1.2475        | 8.25  | 2150 | 0.7099          | 0.7925   | 0.8088    | 0.7925 | 0.7790 | 0.8571 |

| 1.2475        | 8.44  | 2200 | 0.6816          | 0.8167   | 0.8316    | 0.8167 | 0.7998 | 0.8712 |

| 1.2475        | 8.63  | 2250 | 0.6676          | 0.8113   | 0.8264    | 0.8113 | 0.8025 | 0.8663 |

| 1.2475        | 8.82  | 2300 | 0.7176          | 0.8113   | 0.8326    | 0.8113 | 0.7973 | 0.8663 |

| 1.1791        | 9.01  | 2350 | 0.6161          | 0.8356   | 0.8500    | 0.8356 | 0.8238 | 0.8833 |

| 1.1791        | 9.2   | 2400 | 0.6973          | 0.8032   | 0.8165    | 0.8032 | 0.7873 | 0.8606 |

| 1.1791        | 9.4   | 2450 | 0.6981          | 0.8248   | 0.8531    | 0.8248 | 0.8138 | 0.8757 |

| 1.1791        | 9.59  | 2500 | 0.6134          | 0.8356   | 0.8417    | 0.8356 | 0.8231 | 0.8833 |

| 1.1791        | 9.78  | 2550 | 0.5840          | 0.8356   | 0.8498    | 0.8356 | 0.8220 | 0.8833 |

| 1.1791        | 9.97  | 2600 | 0.5940          | 0.8329   | 0.8479    | 0.8329 | 0.8170 | 0.8814 |

| 1.1047        | 10.16 | 2650 | 0.5539          | 0.8491   | 0.8641    | 0.8491 | 0.8435 | 0.8935 |

| 1.1047        | 10.35 | 2700 | 0.6522          | 0.8410   | 0.8582    | 0.8410 | 0.8269 | 0.8871 |

| 1.1047        | 10.55 | 2750 | 0.5940          | 0.8356   | 0.8631    | 0.8356 | 0.8263 | 0.8852 |

| 1.1047        | 10.74 | 2800 | 0.5980          | 0.8464   | 0.8558    | 0.8464 | 0.8376 | 0.8927 |

| 1.1047        | 10.93 | 2850 | 0.6173          | 0.8302   | 0.8518    | 0.8302 | 0.8222 | 0.8795 |

| 1.0458        | 11.12 | 2900 | 0.5973          | 0.8356   | 0.8580    | 0.8356 | 0.8257 | 0.8833 |

| 1.0458        | 11.31 | 2950 | 0.5135          | 0.8706   | 0.8853    | 0.8706 | 0.8660 | 0.9078 |

| 1.0458        | 11.51 | 3000 | 0.5858          | 0.8410   | 0.8551    | 0.8410 | 0.8290 | 0.8871 |

| 1.0458        | 11.7  | 3050 | 0.6788          | 0.8248   | 0.8479    | 0.8248 | 0.8113 | 0.8757 |

| 1.0458        | 11.89 | 3100 | 0.5917          | 0.8437   | 0.8565    | 0.8437 | 0.8306 | 0.8889 |

| 0.9866        | 12.08 | 3150 | 0.6466          | 0.8194   | 0.8328    | 0.8194 | 0.8078 | 0.8720 |

| 0.9866        | 12.27 | 3200 | 0.6311          | 0.8194   | 0.8357    | 0.8194 | 0.8102 | 0.8720 |

| 0.9866        | 12.46 | 3250 | 0.6292          | 0.8383   | 0.8589    | 0.8383 | 0.8276 | 0.8852 |

| 0.9866        | 12.66 | 3300 | 0.5887          | 0.8437   | 0.8609    | 0.8437 | 0.8360 | 0.8908 |

| 0.9866        | 12.85 | 3350 | 0.6003          | 0.8302   | 0.8490    | 0.8302 | 0.8221 | 0.8795 |

| 0.9574        | 13.04 | 3400 | 0.5590          | 0.8625   | 0.8881    | 0.8625 | 0.8580 | 0.9022 |

| 0.9574        | 13.23 | 3450 | 0.6750          | 0.8086   | 0.8223    | 0.8086 | 0.7958 | 0.8644 |

| 0.9574        | 13.42 | 3500 | 0.6180          | 0.8302   | 0.8556    | 0.8302 | 0.8245 | 0.8795 |

| 0.9574        | 13.61 | 3550 | 0.5702          | 0.8625   | 0.8812    | 0.8625 | 0.8572 | 0.9022 |

| 0.9574        | 13.81 | 3600 | 0.5661          | 0.8625   | 0.8747    | 0.8625 | 0.8536 | 0.9022 |

| 0.9574        | 14.0  | 3650 | 0.6820          | 0.8302   | 0.8449    | 0.8302 | 0.8230 | 0.8825 |

| 0.9173        | 14.19 | 3700 | 0.5872          | 0.8544   | 0.8772    | 0.8544 | 0.8474 | 0.8984 |

| 0.9173        | 14.38 | 3750 | 0.5503          | 0.8571   | 0.8758    | 0.8571 | 0.8506 | 0.8984 |

| 0.9173        | 14.57 | 3800 | 0.5711          | 0.8652   | 0.8889    | 0.8652 | 0.8594 | 0.9040 |

| 0.9173        | 14.77 | 3850 | 0.5832          | 0.8491   | 0.8703    | 0.8491 | 0.8431 | 0.8927 |

| 0.9173        | 14.96 | 3900 | 0.5457          | 0.8706   | 0.8929    | 0.8706 | 0.8658 | 0.9089 |

| 0.8859        | 15.15 | 3950 | 0.6410          | 0.8491   | 0.8667    | 0.8491 | 0.8406 | 0.8927 |

| 0.8859        | 15.34 | 4000 | 0.5822          | 0.8410   | 0.8661    | 0.8410 | 0.8340 | 0.8871 |

| 0.8859        | 15.53 | 4050 | 0.6173          | 0.8464   | 0.8720    | 0.8464 | 0.8406 | 0.8919 |

| 0.8859        | 15.72 | 4100 | 0.6509          | 0.8356   | 0.8535    | 0.8356 | 0.8267 | 0.8833 |

| 0.8859        | 15.92 | 4150 | 0.7177          | 0.8275   | 0.8419    | 0.8275 | 0.8156 | 0.8776 |

| 0.8447        | 16.11 | 4200 | 0.5898          | 0.8437   | 0.8531    | 0.8437 | 0.8347 | 0.8889 |

| 0.8447        | 16.3  | 4250 | 0.6429          | 0.8383   | 0.8513    | 0.8383 | 0.8296 | 0.8852 |

| 0.8447        | 16.49 | 4300 | 0.5914          | 0.8625   | 0.8707    | 0.8625 | 0.8553 | 0.9022 |

| 0.8447        | 16.68 | 4350 | 0.5698          | 0.8518   | 0.8714    | 0.8518 | 0.8460 | 0.8946 |

| 0.8447        | 16.87 | 4400 | 0.5938          | 0.8491   | 0.8695    | 0.8491 | 0.8439 | 0.8946 |

| 0.8181        | 17.07 | 4450 | 0.6076          | 0.8356   | 0.8441    | 0.8356 | 0.8263 | 0.8852 |

| 0.8181        | 17.26 | 4500 | 0.5691          | 0.8383   | 0.8518    | 0.8383 | 0.8298 | 0.8852 |

| 0.8181        | 17.45 | 4550 | 0.5490          | 0.8625   | 0.8737    | 0.8625 | 0.8551 | 0.9040 |

| 0.8181        | 17.64 | 4600 | 0.5963          | 0.8598   | 0.8791    | 0.8598 | 0.8538 | 0.9003 |

| 0.8181        | 17.83 | 4650 | 0.6371          | 0.8464   | 0.8699    | 0.8464 | 0.8406 | 0.8908 |

| 0.8015        | 18.02 | 4700 | 0.6348          | 0.8491   | 0.8675    | 0.8491 | 0.8449 | 0.8927 |

| 0.8015        | 18.22 | 4750 | 0.6207          | 0.8571   | 0.8711    | 0.8571 | 0.8487 | 0.8984 |

| 0.8015        | 18.41 | 4800 | 0.6759          | 0.8518   | 0.8709    | 0.8518 | 0.8479 | 0.8946 |

| 0.8015        | 18.6  | 4850 | 0.7267          | 0.8248   | 0.8346    | 0.8248 | 0.8136 | 0.8757 |

| 0.8015        | 18.79 | 4900 | 0.6420          | 0.8410   | 0.8629    | 0.8410 | 0.8361 | 0.8871 |

| 0.8015        | 18.98 | 4950 | 0.6260          | 0.8464   | 0.8581    | 0.8464 | 0.8375 | 0.8908 |

| 0.7757        | 19.18 | 5000 | 0.6714          | 0.8410   | 0.8666    | 0.8410 | 0.8361 | 0.8889 |

| 0.7757        | 19.37 | 5050 | 0.6414          | 0.8383   | 0.8485    | 0.8383 | 0.8285 | 0.8852 |

| 0.7757        | 19.56 | 5100 | 0.6348          | 0.8356   | 0.8547    | 0.8356 | 0.8261 | 0.8833 |

| 0.7757        | 19.75 | 5150 | 0.6811          | 0.8464   | 0.8625    | 0.8464 | 0.8377 | 0.8908 |

| 0.7757        | 19.94 | 5200 | 0.6294          | 0.8383   | 0.8511    | 0.8383 | 0.8286 | 0.8852 |

| 0.7456        | 20.13 | 5250 | 0.6511          | 0.8679   | 0.8785    | 0.8679 | 0.8589 | 0.9078 |

| 0.7456        | 20.33 | 5300 | 0.6374          | 0.8437   | 0.8543    | 0.8437 | 0.8344 | 0.8889 |

| 0.7456        | 20.52 | 5350 | 0.6019          | 0.8544   | 0.8648    | 0.8544 | 0.8457 | 0.8965 |

| 0.7456        | 20.71 | 5400 | 0.6060          | 0.8571   | 0.8632    | 0.8571 | 0.8469 | 0.8984 |

| 0.7456        | 20.9  | 5450 | 0.6730          | 0.8518   | 0.8626    | 0.8518 | 0.8453 | 0.8946 |

| 0.7406        | 21.09 | 5500 | 0.6091          | 0.8544   | 0.8633    | 0.8544 | 0.8450 | 0.8965 |

| 0.7406        | 21.28 | 5550 | 0.6378          | 0.8598   | 0.8691    | 0.8598 | 0.8511 | 0.9003 |

| 0.7406        | 21.48 | 5600 | 0.5868          | 0.8464   | 0.8543    | 0.8464 | 0.8388 | 0.8908 |

| 0.7406        | 21.67 | 5650 | 0.5930          | 0.8706   | 0.8864    | 0.8706 | 0.8658 | 0.9078 |

| 0.7406        | 21.86 | 5700 | 0.6086          | 0.8544   | 0.8711    | 0.8544 | 0.8497 | 0.8965 |

| 0.7057        | 22.05 | 5750 | 0.6130          | 0.8518   | 0.8751    | 0.8518 | 0.8471 | 0.8946 |

| 0.7057        | 22.24 | 5800 | 0.6477          | 0.8464   | 0.8728    | 0.8464 | 0.8393 | 0.8908 |

| 0.7057        | 22.44 | 5850 | 0.6165          | 0.8518   | 0.8595    | 0.8518 | 0.8434 | 0.8946 |

| 0.7057        | 22.63 | 5900 | 0.6288          | 0.8571   | 0.8693    | 0.8571 | 0.8491 | 0.8984 |

| 0.7057        | 22.82 | 5950 | 0.6246          | 0.8544   | 0.8749    | 0.8544 | 0.8490 | 0.8965 |

| 0.695         | 23.01 | 6000 | 0.5991          | 0.8679   | 0.8874    | 0.8679 | 0.8645 | 0.9059 |

| 0.695         | 23.2  | 6050 | 0.6234          | 0.8598   | 0.8816    | 0.8598 | 0.8556 | 0.9003 |

| 0.695         | 23.39 | 6100 | 0.5764          | 0.8679   | 0.8885    | 0.8679 | 0.8641 | 0.9059 |

| 0.695         | 23.59 | 6150 | 0.6290          | 0.8518   | 0.8641    | 0.8518 | 0.8453 | 0.8946 |

| 0.695         | 23.78 | 6200 | 0.6267          | 0.8518   | 0.8634    | 0.8518 | 0.8433 | 0.8946 |

| 0.695         | 23.97 | 6250 | 0.6294          | 0.8491   | 0.8582    | 0.8491 | 0.8404 | 0.8927 |

| 0.6782        | 24.16 | 6300 | 0.6001          | 0.8491   | 0.8618    | 0.8491 | 0.8421 | 0.8927 |

| 0.6782        | 24.35 | 6350 | 0.6042          | 0.8598   | 0.8687    | 0.8598 | 0.8530 | 0.9003 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1