File size: 12,597 Bytes
87ad0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug-fold-7
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug-fold-7

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4362
- Accuracy: 0.8976
- Precision: 0.9089
- Recall: 0.8976
- F1: 0.8953
- Binary: 0.9294

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.19  | 50   | 4.0533          | 0.0324   | 0.0014    | 0.0324 | 0.0027 | 0.2927 |

| No log        | 0.38  | 100  | 3.5885          | 0.0514   | 0.0169    | 0.0514 | 0.0106 | 0.3262 |

| No log        | 0.58  | 150  | 3.3501          | 0.0541   | 0.0206    | 0.0541 | 0.0140 | 0.3330 |

| No log        | 0.77  | 200  | 3.2675          | 0.0649   | 0.0154    | 0.0649 | 0.0203 | 0.3405 |

| No log        | 0.96  | 250  | 3.0965          | 0.1162   | 0.0330    | 0.1162 | 0.0456 | 0.3797 |

| 3.7373        | 1.15  | 300  | 2.9467          | 0.1514   | 0.0616    | 0.1514 | 0.0770 | 0.4035 |

| 3.7373        | 1.34  | 350  | 2.7676          | 0.2      | 0.1022    | 0.2    | 0.1111 | 0.4384 |

| 3.7373        | 1.53  | 400  | 2.5435          | 0.2649   | 0.1888    | 0.2649 | 0.1783 | 0.4805 |

| 3.7373        | 1.73  | 450  | 2.3812          | 0.2973   | 0.1993    | 0.2973 | 0.1965 | 0.5068 |

| 3.7373        | 1.92  | 500  | 2.1573          | 0.3946   | 0.3075    | 0.3946 | 0.3120 | 0.5749 |

| 2.9139        | 2.11  | 550  | 1.9561          | 0.4486   | 0.4077    | 0.4486 | 0.3798 | 0.6132 |

| 2.9139        | 2.3   | 600  | 1.7966          | 0.4784   | 0.4652    | 0.4784 | 0.4273 | 0.6324 |

| 2.9139        | 2.49  | 650  | 1.7610          | 0.5270   | 0.5083    | 0.5270 | 0.4675 | 0.6632 |

| 2.9139        | 2.68  | 700  | 1.5796          | 0.5351   | 0.4840    | 0.5351 | 0.4750 | 0.6741 |

| 2.9139        | 2.88  | 750  | 1.4707          | 0.5676   | 0.5624    | 0.5676 | 0.5239 | 0.6935 |

| 2.2164        | 3.07  | 800  | 1.3680          | 0.6162   | 0.6049    | 0.6162 | 0.5829 | 0.7286 |

| 2.2164        | 3.26  | 850  | 1.2484          | 0.6162   | 0.6078    | 0.6162 | 0.5800 | 0.7319 |

| 2.2164        | 3.45  | 900  | 1.1271          | 0.6649   | 0.6659    | 0.6649 | 0.6400 | 0.7646 |

| 2.2164        | 3.64  | 950  | 1.0343          | 0.7108   | 0.7139    | 0.7108 | 0.6851 | 0.7959 |

| 2.2164        | 3.84  | 1000 | 1.0379          | 0.7027   | 0.7076    | 0.7027 | 0.6733 | 0.7922 |

| 1.8319        | 4.03  | 1050 | 1.0744          | 0.7      | 0.7494    | 0.7    | 0.6818 | 0.7935 |

| 1.8319        | 4.22  | 1100 | 0.9615          | 0.7324   | 0.7692    | 0.7324 | 0.7194 | 0.8141 |

| 1.8319        | 4.41  | 1150 | 0.8683          | 0.7514   | 0.7827    | 0.7514 | 0.7341 | 0.8251 |

| 1.8319        | 4.6   | 1200 | 0.8870          | 0.7432   | 0.7827    | 0.7432 | 0.7307 | 0.8195 |

| 1.8319        | 4.79  | 1250 | 0.8191          | 0.7676   | 0.7874    | 0.7676 | 0.7516 | 0.8357 |

| 1.8319        | 4.99  | 1300 | 0.7923          | 0.7784   | 0.8235    | 0.7784 | 0.7701 | 0.8441 |

| 1.5844        | 5.18  | 1350 | 0.7525          | 0.8      | 0.8203    | 0.8    | 0.7905 | 0.8605 |

| 1.5844        | 5.37  | 1400 | 0.7352          | 0.8      | 0.8401    | 0.8    | 0.7994 | 0.8603 |

| 1.5844        | 5.56  | 1450 | 0.6931          | 0.8081   | 0.8423    | 0.8081 | 0.8017 | 0.8649 |

| 1.5844        | 5.75  | 1500 | 0.6872          | 0.8081   | 0.8367    | 0.8081 | 0.8005 | 0.8670 |

| 1.5844        | 5.94  | 1550 | 0.6630          | 0.8189   | 0.8507    | 0.8189 | 0.8133 | 0.8735 |

| 1.4042        | 6.14  | 1600 | 0.6284          | 0.8216   | 0.8424    | 0.8216 | 0.8153 | 0.8757 |

| 1.4042        | 6.33  | 1650 | 0.7190          | 0.7865   | 0.8274    | 0.7865 | 0.7788 | 0.8508 |

| 1.4042        | 6.52  | 1700 | 0.6470          | 0.8216   | 0.8428    | 0.8216 | 0.8163 | 0.8754 |

| 1.4042        | 6.71  | 1750 | 0.6415          | 0.8324   | 0.8655    | 0.8324 | 0.8277 | 0.8822 |

| 1.4042        | 6.9   | 1800 | 0.6644          | 0.8216   | 0.8554    | 0.8216 | 0.8133 | 0.8735 |

| 1.2826        | 7.09  | 1850 | 0.6328          | 0.8243   | 0.8607    | 0.8243 | 0.8217 | 0.8781 |

| 1.2826        | 7.29  | 1900 | 0.6106          | 0.8351   | 0.8673    | 0.8351 | 0.8284 | 0.8857 |

| 1.2826        | 7.48  | 1950 | 0.6186          | 0.8297   | 0.8686    | 0.8297 | 0.8248 | 0.8803 |

| 1.2826        | 7.67  | 2000 | 0.6167          | 0.8351   | 0.8709    | 0.8351 | 0.8321 | 0.8838 |

| 1.2826        | 7.86  | 2050 | 0.5680          | 0.8378   | 0.8691    | 0.8378 | 0.8352 | 0.8857 |

| 1.1959        | 8.05  | 2100 | 0.5415          | 0.8541   | 0.8849    | 0.8541 | 0.8512 | 0.8978 |

| 1.1959        | 8.25  | 2150 | 0.5322          | 0.8568   | 0.8910    | 0.8568 | 0.8552 | 0.8997 |

| 1.1959        | 8.44  | 2200 | 0.5865          | 0.8432   | 0.8675    | 0.8432 | 0.8373 | 0.8914 |

| 1.1959        | 8.63  | 2250 | 0.5779          | 0.8541   | 0.8865    | 0.8541 | 0.8512 | 0.9000 |

| 1.1959        | 8.82  | 2300 | 0.5011          | 0.8757   | 0.9080    | 0.8757 | 0.8752 | 0.9154 |

| 1.1236        | 9.01  | 2350 | 0.5108          | 0.8514   | 0.8804    | 0.8514 | 0.8498 | 0.8981 |

| 1.1236        | 9.2   | 2400 | 0.5375          | 0.8486   | 0.8772    | 0.8486 | 0.8459 | 0.8962 |

| 1.1236        | 9.4   | 2450 | 0.5775          | 0.8459   | 0.8746    | 0.8459 | 0.8473 | 0.8943 |

| 1.1236        | 9.59  | 2500 | 0.5318          | 0.8514   | 0.8862    | 0.8514 | 0.8497 | 0.9003 |

| 1.1236        | 9.78  | 2550 | 0.5484          | 0.8459   | 0.8761    | 0.8459 | 0.8439 | 0.8976 |

| 1.1236        | 9.97  | 2600 | 0.5733          | 0.8486   | 0.8849    | 0.8486 | 0.8474 | 0.8951 |

| 1.0544        | 10.16 | 2650 | 0.5349          | 0.8541   | 0.8818    | 0.8541 | 0.8496 | 0.9000 |

| 1.0544        | 10.35 | 2700 | 0.5435          | 0.8459   | 0.8777    | 0.8459 | 0.8388 | 0.8932 |

| 1.0544        | 10.55 | 2750 | 0.4787          | 0.8595   | 0.8822    | 0.8595 | 0.8563 | 0.9027 |

| 1.0544        | 10.74 | 2800 | 0.4678          | 0.8595   | 0.8880    | 0.8595 | 0.8562 | 0.9027 |

| 1.0544        | 10.93 | 2850 | 0.4572          | 0.8730   | 0.9001    | 0.8730 | 0.8707 | 0.9103 |

| 1.0171        | 11.12 | 2900 | 0.5138          | 0.8568   | 0.8876    | 0.8568 | 0.8529 | 0.8997 |

| 1.0171        | 11.31 | 2950 | 0.5102          | 0.8757   | 0.8980    | 0.8757 | 0.8750 | 0.9130 |

| 1.0171        | 11.51 | 3000 | 0.5265          | 0.8676   | 0.8921    | 0.8676 | 0.8649 | 0.9076 |

| 1.0171        | 11.7  | 3050 | 0.4659          | 0.8730   | 0.8961    | 0.8730 | 0.8733 | 0.9132 |

| 1.0171        | 11.89 | 3100 | 0.4995          | 0.8676   | 0.8917    | 0.8676 | 0.8621 | 0.9084 |

| 0.9541        | 12.08 | 3150 | 0.4533          | 0.8811   | 0.8996    | 0.8811 | 0.8788 | 0.9168 |

| 0.9541        | 12.27 | 3200 | 0.4571          | 0.8865   | 0.9085    | 0.8865 | 0.8866 | 0.9205 |

| 0.9541        | 12.46 | 3250 | 0.4846          | 0.8622   | 0.8908    | 0.8622 | 0.8596 | 0.9035 |

| 0.9541        | 12.66 | 3300 | 0.4850          | 0.8730   | 0.8989    | 0.8730 | 0.8710 | 0.9111 |

| 0.9541        | 12.85 | 3350 | 0.4826          | 0.8568   | 0.8834    | 0.8568 | 0.8522 | 0.8997 |

| 0.9149        | 13.04 | 3400 | 0.4680          | 0.8730   | 0.8938    | 0.8730 | 0.8717 | 0.9103 |

| 0.9149        | 13.23 | 3450 | 0.5733          | 0.8486   | 0.8769    | 0.8486 | 0.8468 | 0.8941 |

| 0.9149        | 13.42 | 3500 | 0.5068          | 0.8730   | 0.8975    | 0.8730 | 0.8718 | 0.9111 |

| 0.9149        | 13.61 | 3550 | 0.4816          | 0.8730   | 0.8991    | 0.8730 | 0.8721 | 0.9122 |

| 0.9149        | 13.81 | 3600 | 0.5007          | 0.8676   | 0.8944    | 0.8676 | 0.8677 | 0.9095 |

| 0.9149        | 14.0  | 3650 | 0.4674          | 0.8811   | 0.9061    | 0.8811 | 0.8796 | 0.9168 |

| 0.8802        | 14.19 | 3700 | 0.4997          | 0.8622   | 0.8860    | 0.8622 | 0.8608 | 0.9035 |

| 0.8802        | 14.38 | 3750 | 0.4425          | 0.8784   | 0.9036    | 0.8784 | 0.8768 | 0.9149 |

| 0.8802        | 14.57 | 3800 | 0.5111          | 0.8811   | 0.9088    | 0.8811 | 0.8808 | 0.9170 |

| 0.8802        | 14.77 | 3850 | 0.4408          | 0.8811   | 0.9036    | 0.8811 | 0.8794 | 0.9168 |

| 0.8802        | 14.96 | 3900 | 0.5053          | 0.8622   | 0.8855    | 0.8622 | 0.8570 | 0.9035 |

| 0.8475        | 15.15 | 3950 | 0.5046          | 0.8622   | 0.8897    | 0.8622 | 0.8599 | 0.9038 |

| 0.8475        | 15.34 | 4000 | 0.4560          | 0.8649   | 0.8849    | 0.8649 | 0.8635 | 0.9068 |

| 0.8475        | 15.53 | 4050 | 0.4562          | 0.8730   | 0.8944    | 0.8730 | 0.8722 | 0.9124 |

| 0.8475        | 15.72 | 4100 | 0.4827          | 0.8622   | 0.8932    | 0.8622 | 0.8611 | 0.9027 |

| 0.8475        | 15.92 | 4150 | 0.4750          | 0.8784   | 0.9039    | 0.8784 | 0.8775 | 0.9159 |

| 0.8235        | 16.11 | 4200 | 0.4789          | 0.8703   | 0.8998    | 0.8703 | 0.8689 | 0.9092 |

| 0.8235        | 16.3  | 4250 | 0.4445          | 0.8892   | 0.9136    | 0.8892 | 0.8875 | 0.9227 |

| 0.8235        | 16.49 | 4300 | 0.4804          | 0.8703   | 0.8950    | 0.8703 | 0.8690 | 0.9086 |

| 0.8235        | 16.68 | 4350 | 0.4556          | 0.8676   | 0.8878    | 0.8676 | 0.8639 | 0.9076 |

| 0.8235        | 16.87 | 4400 | 0.5254          | 0.8622   | 0.8844    | 0.8622 | 0.8571 | 0.9030 |

| 0.7913        | 17.07 | 4450 | 0.4432          | 0.8946   | 0.9105    | 0.8946 | 0.8916 | 0.9273 |

| 0.7913        | 17.26 | 4500 | 0.4991          | 0.8622   | 0.8906    | 0.8622 | 0.8603 | 0.9035 |

| 0.7913        | 17.45 | 4550 | 0.4480          | 0.8865   | 0.9067    | 0.8865 | 0.8836 | 0.9205 |

| 0.7913        | 17.64 | 4600 | 0.4408          | 0.8757   | 0.8954    | 0.8757 | 0.8748 | 0.9130 |

| 0.7913        | 17.83 | 4650 | 0.4559          | 0.8811   | 0.9033    | 0.8811 | 0.8804 | 0.9189 |

| 0.7769        | 18.02 | 4700 | 0.4716          | 0.8919   | 0.9136    | 0.8919 | 0.8914 | 0.9254 |

| 0.7769        | 18.22 | 4750 | 0.4492          | 0.8811   | 0.9059    | 0.8811 | 0.8785 | 0.9170 |

| 0.7769        | 18.41 | 4800 | 0.4714          | 0.8811   | 0.9062    | 0.8811 | 0.8798 | 0.9170 |

| 0.7769        | 18.6  | 4850 | 0.4849          | 0.8757   | 0.9015    | 0.8757 | 0.8745 | 0.9122 |

| 0.7769        | 18.79 | 4900 | 0.4156          | 0.8946   | 0.9140    | 0.8946 | 0.8918 | 0.9262 |

| 0.7769        | 18.98 | 4950 | 0.4333          | 0.8892   | 0.9066    | 0.8892 | 0.8862 | 0.9227 |

| 0.7461        | 19.18 | 5000 | 0.4054          | 0.9054   | 0.9220    | 0.9054 | 0.9033 | 0.9341 |

| 0.7461        | 19.37 | 5050 | 0.4613          | 0.8757   | 0.8999    | 0.8757 | 0.8699 | 0.9132 |

| 0.7461        | 19.56 | 5100 | 0.4379          | 0.8865   | 0.9112    | 0.8865 | 0.8854 | 0.9219 |

| 0.7461        | 19.75 | 5150 | 0.4349          | 0.8946   | 0.9120    | 0.8946 | 0.8934 | 0.9262 |

| 0.7461        | 19.94 | 5200 | 0.4647          | 0.8811   | 0.9009    | 0.8811 | 0.8794 | 0.9181 |

| 0.7216        | 20.13 | 5250 | 0.4346          | 0.9027   | 0.9189    | 0.9027 | 0.9017 | 0.9322 |

| 0.7216        | 20.33 | 5300 | 0.4577          | 0.9      | 0.9156    | 0.9    | 0.8984 | 0.9322 |

| 0.7216        | 20.52 | 5350 | 0.4712          | 0.8946   | 0.9152    | 0.8946 | 0.8944 | 0.9276 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1