File size: 8,719 Bytes
9e11c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug-large
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug-large

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5737
- Accuracy: 0.8518
- Precision: 0.8710
- Recall: 0.8518
- F1: 0.8459
- Binary: 0.8946

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.1   | 50   | 4.2254          | 0.0296   | 0.0051    | 0.0296 | 0.0050 | 0.2472 |

| No log        | 0.2   | 100  | 3.6044          | 0.0499   | 0.0034    | 0.0499 | 0.0062 | 0.3265 |

| No log        | 0.29  | 150  | 3.4158          | 0.0620   | 0.0137    | 0.0620 | 0.0182 | 0.3314 |

| No log        | 0.39  | 200  | 3.1970          | 0.0943   | 0.0301    | 0.0943 | 0.0402 | 0.3632 |

| No log        | 0.49  | 250  | 3.1359          | 0.1253   | 0.0438    | 0.1253 | 0.0550 | 0.3786 |

| No log        | 0.59  | 300  | 2.8477          | 0.1941   | 0.0877    | 0.1941 | 0.1046 | 0.4311 |

| No log        | 0.69  | 350  | 2.5968          | 0.2291   | 0.1477    | 0.2291 | 0.1464 | 0.4569 |

| No log        | 0.78  | 400  | 2.3869          | 0.3019   | 0.2233    | 0.3019 | 0.1981 | 0.5092 |

| No log        | 0.88  | 450  | 2.2318          | 0.3342   | 0.2618    | 0.3342 | 0.2491 | 0.5337 |

| 3.3246        | 0.98  | 500  | 2.0726          | 0.4057   | 0.3384    | 0.4057 | 0.3220 | 0.5819 |

| 3.3246        | 1.08  | 550  | 1.9390          | 0.4043   | 0.3492    | 0.4043 | 0.3267 | 0.5813 |

| 3.3246        | 1.18  | 600  | 1.8723          | 0.4394   | 0.3484    | 0.4394 | 0.3548 | 0.6063 |

| 3.3246        | 1.27  | 650  | 1.7220          | 0.5081   | 0.4868    | 0.5081 | 0.4462 | 0.6571 |

| 3.3246        | 1.37  | 700  | 1.5947          | 0.5283   | 0.4654    | 0.5283 | 0.4610 | 0.6691 |

| 3.3246        | 1.47  | 750  | 1.5081          | 0.5512   | 0.5536    | 0.5512 | 0.5010 | 0.6863 |

| 3.3246        | 1.57  | 800  | 1.3927          | 0.6078   | 0.6098    | 0.6078 | 0.5698 | 0.7252 |

| 3.3246        | 1.67  | 850  | 1.2970          | 0.6361   | 0.6405    | 0.6361 | 0.6036 | 0.7445 |

| 3.3246        | 1.76  | 900  | 1.2218          | 0.6658   | 0.6832    | 0.6658 | 0.6470 | 0.7663 |

| 3.3246        | 1.86  | 950  | 1.2574          | 0.6725   | 0.7113    | 0.6725 | 0.6538 | 0.7698 |

| 2.1116        | 1.96  | 1000 | 1.0768          | 0.7224   | 0.7288    | 0.7224 | 0.7073 | 0.8058 |

| 2.1116        | 2.06  | 1050 | 1.0574          | 0.7318   | 0.7445    | 0.7318 | 0.7160 | 0.8113 |

| 2.1116        | 2.16  | 1100 | 0.9994          | 0.7332   | 0.7526    | 0.7332 | 0.7171 | 0.8139 |

| 2.1116        | 2.25  | 1150 | 0.9494          | 0.7358   | 0.7497    | 0.7358 | 0.7196 | 0.8159 |

| 2.1116        | 2.35  | 1200 | 0.8719          | 0.7588   | 0.7743    | 0.7588 | 0.7456 | 0.8306 |

| 2.1116        | 2.45  | 1250 | 0.8674          | 0.7642   | 0.7862    | 0.7642 | 0.7530 | 0.8345 |

| 2.1116        | 2.55  | 1300 | 0.8805          | 0.7857   | 0.8075    | 0.7857 | 0.7754 | 0.8487 |

| 2.1116        | 2.65  | 1350 | 0.8389          | 0.7682   | 0.7955    | 0.7682 | 0.7601 | 0.8377 |

| 2.1116        | 2.75  | 1400 | 0.8189          | 0.7763   | 0.7913    | 0.7763 | 0.7640 | 0.8411 |

| 2.1116        | 2.84  | 1450 | 0.7739          | 0.7871   | 0.7881    | 0.7871 | 0.7737 | 0.8491 |

| 1.5744        | 2.94  | 1500 | 0.7971          | 0.7668   | 0.7887    | 0.7668 | 0.7567 | 0.8360 |

| 1.5744        | 3.04  | 1550 | 0.7348          | 0.7844   | 0.7998    | 0.7844 | 0.7781 | 0.8478 |

| 1.5744        | 3.14  | 1600 | 0.7241          | 0.7925   | 0.8115    | 0.7925 | 0.7838 | 0.8534 |

| 1.5744        | 3.24  | 1650 | 0.7763          | 0.7749   | 0.8010    | 0.7749 | 0.7709 | 0.8411 |

| 1.5744        | 3.33  | 1700 | 0.6638          | 0.8073   | 0.8278    | 0.8073 | 0.8036 | 0.8646 |

| 1.5744        | 3.43  | 1750 | 0.7065          | 0.8100   | 0.8339    | 0.8100 | 0.8021 | 0.8656 |

| 1.5744        | 3.53  | 1800 | 0.7391          | 0.7951   | 0.8212    | 0.7951 | 0.7878 | 0.8561 |

| 1.5744        | 3.63  | 1850 | 0.6450          | 0.8181   | 0.8385    | 0.8181 | 0.8125 | 0.8721 |

| 1.5744        | 3.73  | 1900 | 0.6834          | 0.8113   | 0.8342    | 0.8113 | 0.8076 | 0.8670 |

| 1.5744        | 3.82  | 1950 | 0.6616          | 0.8113   | 0.8311    | 0.8113 | 0.8025 | 0.8668 |

| 1.312         | 3.92  | 2000 | 0.6177          | 0.8194   | 0.8388    | 0.8194 | 0.8149 | 0.8718 |

| 1.312         | 4.02  | 2050 | 0.6550          | 0.8059   | 0.8338    | 0.8059 | 0.7979 | 0.8637 |

| 1.312         | 4.12  | 2100 | 0.5995          | 0.8261   | 0.8438    | 0.8261 | 0.8206 | 0.8772 |

| 1.312         | 4.22  | 2150 | 0.6833          | 0.8127   | 0.8340    | 0.8127 | 0.8069 | 0.8678 |

| 1.312         | 4.31  | 2200 | 0.6185          | 0.8275   | 0.8438    | 0.8275 | 0.8232 | 0.8787 |

| 1.312         | 4.41  | 2250 | 0.6334          | 0.8167   | 0.8364    | 0.8167 | 0.8111 | 0.8708 |

| 1.312         | 4.51  | 2300 | 0.6100          | 0.8208   | 0.8372    | 0.8208 | 0.8171 | 0.8725 |

| 1.312         | 4.61  | 2350 | 0.5953          | 0.8302   | 0.8477    | 0.8302 | 0.8268 | 0.8805 |

| 1.312         | 4.71  | 2400 | 0.5847          | 0.8194   | 0.8278    | 0.8194 | 0.8125 | 0.8735 |

| 1.312         | 4.8   | 2450 | 0.5932          | 0.8329   | 0.8475    | 0.8329 | 0.8295 | 0.8814 |

| 1.1711        | 4.9   | 2500 | 0.5890          | 0.8329   | 0.8511    | 0.8329 | 0.8285 | 0.8811 |

| 1.1711        | 5.0   | 2550 | 0.5662          | 0.8437   | 0.8574    | 0.8437 | 0.8374 | 0.8885 |

| 1.1711        | 5.1   | 2600 | 0.5648          | 0.8531   | 0.8657    | 0.8531 | 0.8494 | 0.8953 |

| 1.1711        | 5.2   | 2650 | 0.5805          | 0.8410   | 0.8555    | 0.8410 | 0.8385 | 0.8858 |

| 1.1711        | 5.29  | 2700 | 0.5372          | 0.8477   | 0.8631    | 0.8477 | 0.8426 | 0.8919 |

| 1.1711        | 5.39  | 2750 | 0.5698          | 0.8491   | 0.8661    | 0.8491 | 0.8481 | 0.8919 |

| 1.1711        | 5.49  | 2800 | 0.5499          | 0.8571   | 0.8756    | 0.8571 | 0.8525 | 0.8993 |

| 1.1711        | 5.59  | 2850 | 0.5643          | 0.8504   | 0.8671    | 0.8504 | 0.8477 | 0.8941 |

| 1.1711        | 5.69  | 2900 | 0.5834          | 0.8491   | 0.8649    | 0.8491 | 0.8461 | 0.8923 |

| 1.1711        | 5.78  | 2950 | 0.5306          | 0.8612   | 0.8760    | 0.8612 | 0.8580 | 0.9004 |

| 1.078         | 5.88  | 3000 | 0.5276          | 0.8571   | 0.8738    | 0.8571 | 0.8532 | 0.8980 |

| 1.078         | 5.98  | 3050 | 0.5294          | 0.8531   | 0.8792    | 0.8531 | 0.8507 | 0.8960 |

| 1.078         | 6.08  | 3100 | 0.5305          | 0.8558   | 0.8740    | 0.8558 | 0.8525 | 0.8974 |

| 1.078         | 6.18  | 3150 | 0.5546          | 0.8518   | 0.8700    | 0.8518 | 0.8488 | 0.8946 |

| 1.078         | 6.27  | 3200 | 0.5292          | 0.8652   | 0.8844    | 0.8652 | 0.8613 | 0.9049 |

| 1.078         | 6.37  | 3250 | 0.5871          | 0.8288   | 0.8527    | 0.8288 | 0.8270 | 0.8796 |

| 1.078         | 6.47  | 3300 | 0.5549          | 0.8477   | 0.8656    | 0.8477 | 0.8438 | 0.8914 |

| 1.078         | 6.57  | 3350 | 0.5559          | 0.8410   | 0.8544    | 0.8410 | 0.8349 | 0.8876 |

| 1.078         | 6.67  | 3400 | 0.5496          | 0.8531   | 0.8688    | 0.8531 | 0.8496 | 0.8961 |

| 1.078         | 6.76  | 3450 | 0.5737          | 0.8518   | 0.8710    | 0.8518 | 0.8459 | 0.8946 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1