File size: 3,404 Bytes
cc6c2d2
 
 
 
 
 
 
 
 
 
 
9089351
cc6c2d2
 
 
 
 
 
9089351
cc6c2d2
 
 
1a4dfd3
f97fbee
 
 
 
 
cc6c2d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c6798
878d563
cc6c2d2
 
 
878d563
cc6c2d2
 
b9fa467
cc6c2d2
 
 
 
 
 
1a4dfd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6c2d2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4216
- Accuracy: 0.0148
- Precision: 0.0002
- Recall: 0.0148
- F1: 0.0004
- Binary: 0.1283

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.15  | 50   | 4.4273          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1371 |

| No log        | 0.31  | 100  | 4.4237          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1283 |

| No log        | 0.46  | 150  | 4.4239          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1352 |

| No log        | 0.62  | 200  | 4.4237          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1283 |

| No log        | 0.77  | 250  | 4.4218          | 0.0135   | 0.0002    | 0.0135 | 0.0004 | 0.1264 |

| No log        | 0.92  | 300  | 4.4224          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1371 |

| No log        | 1.08  | 350  | 4.4214          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1283 |

| No log        | 1.23  | 400  | 4.4213          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1261 |

| No log        | 1.39  | 450  | 4.4209          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1283 |

| 4.4252        | 1.54  | 500  | 4.4216          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1283 |

| 4.4252        | 1.69  | 550  | 4.4213          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1302 |

| 4.4252        | 1.85  | 600  | 4.4208          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1371 |

| 4.4252        | 2.0   | 650  | 4.4211          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1371 |

| 4.4252        | 2.16  | 700  | 4.4231          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1371 |

| 4.4252        | 2.31  | 750  | 4.4209          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1283 |

| 4.4252        | 2.47  | 800  | 4.4209          | 0.0135   | 0.0002    | 0.0135 | 0.0004 | 0.1233 |

| 4.4252        | 2.62  | 850  | 4.4215          | 0.0148   | 0.0002    | 0.0148 | 0.0004 | 0.1261 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1