File size: 3,404 Bytes
cc6c2d2 9089351 cc6c2d2 9089351 cc6c2d2 f97fbee cc6c2d2 e4c6798 878d563 cc6c2d2 878d563 cc6c2d2 b9fa467 cc6c2d2 f97fbee cc6c2d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-classifier-aug
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4213
- Accuracy: 0.0148
- Precision: 0.0002
- Recall: 0.0148
- F1: 0.0004
- Binary: 0.1283
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log | 0.15 | 50 | 4.4256 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1243 |
| No log | 0.31 | 100 | 4.4222 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1333 |
| No log | 0.46 | 150 | 4.4227 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1352 |
| No log | 0.62 | 200 | 4.4228 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1371 |
| No log | 0.77 | 250 | 4.4222 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1264 |
| No log | 0.92 | 300 | 4.4226 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1371 |
| No log | 1.08 | 350 | 4.4219 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1283 |
| No log | 1.23 | 400 | 4.4221 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1261 |
| No log | 1.39 | 450 | 4.4221 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1283 |
| 4.4251 | 1.54 | 500 | 4.4213 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1283 |
| 4.4251 | 1.69 | 550 | 4.4215 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1352 |
| 4.4251 | 1.85 | 600 | 4.4210 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1333 |
| 4.4251 | 2.0 | 650 | 4.4214 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1371 |
| 4.4251 | 2.16 | 700 | 4.4229 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1371 |
| 4.4251 | 2.31 | 750 | 4.4208 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1283 |
| 4.4251 | 2.47 | 800 | 4.4214 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1283 |
| 4.4251 | 2.62 | 850 | 4.4207 | 0.0148 | 0.0002 | 0.0148 | 0.0004 | 0.1371 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1
|