File size: 6,973 Bytes
cc6c2d2
 
 
 
 
 
 
 
 
 
 
9089351
cc6c2d2
 
 
 
 
 
9089351
cc6c2d2
 
 
e4c6798
 
 
 
 
 
cc6c2d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c6798
878d563
cc6c2d2
 
 
878d563
cc6c2d2
 
878d563
cc6c2d2
 
 
 
 
 
e4c6798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6c2d2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5264
- Accuracy: 0.8625
- Precision: 0.8662
- Recall: 0.8625
- F1: 0.8517
- Binary: 0.9030

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.19  | 50   | 3.8945          | 0.0566   | 0.0077    | 0.0566 | 0.0127 | 0.3326 |

| No log        | 0.38  | 100  | 3.4610          | 0.0701   | 0.0208    | 0.0701 | 0.0174 | 0.3418 |

| No log        | 0.58  | 150  | 3.2223          | 0.1051   | 0.0294    | 0.1051 | 0.0364 | 0.3720 |

| No log        | 0.77  | 200  | 3.1153          | 0.1294   | 0.0504    | 0.1294 | 0.0565 | 0.3795 |

| No log        | 0.96  | 250  | 2.8292          | 0.1914   | 0.1010    | 0.1914 | 0.1073 | 0.4315 |

| No log        | 1.15  | 300  | 2.7080          | 0.2264   | 0.1522    | 0.2264 | 0.1461 | 0.4496 |

| No log        | 1.34  | 350  | 2.4083          | 0.2776   | 0.1986    | 0.2776 | 0.1896 | 0.4935 |

| No log        | 1.53  | 400  | 2.2517          | 0.3720   | 0.2762    | 0.3720 | 0.2845 | 0.5580 |

| No log        | 1.73  | 450  | 2.1201          | 0.3908   | 0.3501    | 0.3908 | 0.3098 | 0.5712 |

| 3.1927        | 1.92  | 500  | 1.9149          | 0.4582   | 0.3806    | 0.4582 | 0.3781 | 0.6210 |

| 3.1927        | 2.11  | 550  | 1.7920          | 0.5013   | 0.4684    | 0.5013 | 0.4456 | 0.6515 |

| 3.1927        | 2.3   | 600  | 1.5973          | 0.5418   | 0.4910    | 0.5418 | 0.4765 | 0.6803 |

| 3.1927        | 2.49  | 650  | 1.5067          | 0.5957   | 0.5572    | 0.5957 | 0.5409 | 0.7162 |

| 3.1927        | 2.68  | 700  | 1.3985          | 0.6253   | 0.6046    | 0.6253 | 0.5740 | 0.7361 |

| 3.1927        | 2.88  | 750  | 1.3198          | 0.6604   | 0.6224    | 0.6604 | 0.6114 | 0.7623 |

| 3.1927        | 3.07  | 800  | 1.2483          | 0.6685   | 0.6709    | 0.6685 | 0.6273 | 0.7674 |

| 3.1927        | 3.26  | 850  | 1.1560          | 0.7116   | 0.7063    | 0.7116 | 0.6710 | 0.7973 |

| 3.1927        | 3.45  | 900  | 1.0992          | 0.7197   | 0.7345    | 0.7197 | 0.6872 | 0.8030 |

| 3.1927        | 3.64  | 950  | 1.1148          | 0.7143   | 0.7477    | 0.7143 | 0.6918 | 0.7992 |

| 2.0117        | 3.84  | 1000 | 0.9688          | 0.7682   | 0.7634    | 0.7682 | 0.7404 | 0.8369 |

| 2.0117        | 4.03  | 1050 | 0.9990          | 0.7062   | 0.7148    | 0.7062 | 0.6717 | 0.7927 |

| 2.0117        | 4.22  | 1100 | 0.9516          | 0.7412   | 0.7619    | 0.7412 | 0.7229 | 0.8199 |

| 2.0117        | 4.41  | 1150 | 0.8740          | 0.7763   | 0.7947    | 0.7763 | 0.7582 | 0.8426 |

| 2.0117        | 4.6   | 1200 | 0.8611          | 0.7682   | 0.7800    | 0.7682 | 0.7469 | 0.8388 |

| 2.0117        | 4.79  | 1250 | 0.7992          | 0.7898   | 0.8228    | 0.7898 | 0.7775 | 0.8539 |

| 2.0117        | 4.99  | 1300 | 0.8161          | 0.7898   | 0.8209    | 0.7898 | 0.7756 | 0.8512 |

| 2.0117        | 5.18  | 1350 | 0.7420          | 0.7925   | 0.8144    | 0.7925 | 0.7768 | 0.8539 |

| 2.0117        | 5.37  | 1400 | 0.7420          | 0.7925   | 0.8070    | 0.7925 | 0.7712 | 0.8550 |

| 2.0117        | 5.56  | 1450 | 0.7126          | 0.8140   | 0.8187    | 0.8140 | 0.8017 | 0.8701 |

| 1.5617        | 5.75  | 1500 | 0.6797          | 0.8194   | 0.8436    | 0.8194 | 0.8086 | 0.8739 |

| 1.5617        | 5.94  | 1550 | 0.6877          | 0.8221   | 0.8279    | 0.8221 | 0.8028 | 0.8747 |

| 1.5617        | 6.14  | 1600 | 0.6547          | 0.8329   | 0.8525    | 0.8329 | 0.8230 | 0.8822 |

| 1.5617        | 6.33  | 1650 | 0.5935          | 0.8410   | 0.8589    | 0.8410 | 0.8270 | 0.8879 |

| 1.5617        | 6.52  | 1700 | 0.6423          | 0.8194   | 0.8255    | 0.8194 | 0.8052 | 0.8728 |

| 1.5617        | 6.71  | 1750 | 0.5980          | 0.8464   | 0.8610    | 0.8464 | 0.8322 | 0.8916 |

| 1.5617        | 6.9   | 1800 | 0.6111          | 0.8437   | 0.8543    | 0.8437 | 0.8287 | 0.8916 |

| 1.5617        | 7.09  | 1850 | 0.5835          | 0.8437   | 0.8588    | 0.8437 | 0.8336 | 0.8927 |

| 1.5617        | 7.29  | 1900 | 0.5804          | 0.8329   | 0.8461    | 0.8329 | 0.8210 | 0.8822 |

| 1.5617        | 7.48  | 1950 | 0.5711          | 0.8410   | 0.8580    | 0.8410 | 0.8290 | 0.8908 |

| 1.3255        | 7.67  | 2000 | 0.5468          | 0.8571   | 0.8633    | 0.8571 | 0.8457 | 0.9011 |

| 1.3255        | 7.86  | 2050 | 0.5384          | 0.8652   | 0.8720    | 0.8652 | 0.8553 | 0.9049 |

| 1.3255        | 8.05  | 2100 | 0.5673          | 0.8625   | 0.8684    | 0.8625 | 0.8547 | 0.9030 |

| 1.3255        | 8.25  | 2150 | 0.5450          | 0.8491   | 0.8582    | 0.8491 | 0.8403 | 0.8935 |

| 1.3255        | 8.44  | 2200 | 0.5278          | 0.8706   | 0.8770    | 0.8706 | 0.8630 | 0.9086 |

| 1.3255        | 8.63  | 2250 | 0.5339          | 0.8652   | 0.8692    | 0.8652 | 0.8542 | 0.9049 |

| 1.3255        | 8.82  | 2300 | 0.5469          | 0.8598   | 0.8648    | 0.8598 | 0.8489 | 0.9011 |

| 1.3255        | 9.01  | 2350 | 0.5404          | 0.8706   | 0.8747    | 0.8706 | 0.8602 | 0.9086 |

| 1.3255        | 9.2   | 2400 | 0.5455          | 0.8491   | 0.8565    | 0.8491 | 0.8378 | 0.8935 |

| 1.3255        | 9.4   | 2450 | 0.5317          | 0.8598   | 0.8664    | 0.8598 | 0.8479 | 0.9011 |

| 1.1934        | 9.59  | 2500 | 0.5227          | 0.8760   | 0.8798    | 0.8760 | 0.8657 | 0.9124 |

| 1.1934        | 9.78  | 2550 | 0.5278          | 0.8598   | 0.8653    | 0.8598 | 0.8481 | 0.9011 |

| 1.1934        | 9.97  | 2600 | 0.5264          | 0.8625   | 0.8662    | 0.8625 | 0.8517 | 0.9030 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1