File size: 2,680 Bytes
991aa7a 80279e7 991aa7a 80279e7 991aa7a 80279e7 991aa7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-classifier
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9330
- Accuracy: 0.0674
- Precision: 0.0116
- Recall: 0.0674
- F1: 0.0182
- Binary: 0.3423
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log | 0.96 | 50 | 4.4099 | 0.0647 | 0.0191 | 0.0647 | 0.0221 | 0.2396 |
| No log | 1.91 | 100 | 4.3523 | 0.0593 | 0.0190 | 0.0593 | 0.0194 | 0.3019 |
| No log | 2.87 | 150 | 4.2416 | 0.0701 | 0.0246 | 0.0701 | 0.0235 | 0.3358 |
| No log | 3.83 | 200 | 4.1412 | 0.0701 | 0.0265 | 0.0701 | 0.0214 | 0.3437 |
| No log | 4.78 | 250 | 4.0716 | 0.0593 | 0.0069 | 0.0593 | 0.0122 | 0.3334 |
| No log | 5.74 | 300 | 4.0195 | 0.0701 | 0.0124 | 0.0701 | 0.0186 | 0.3453 |
| No log | 6.7 | 350 | 3.9850 | 0.0593 | 0.0073 | 0.0593 | 0.0126 | 0.3350 |
| No log | 7.66 | 400 | 3.9610 | 0.0647 | 0.0097 | 0.0647 | 0.0162 | 0.3388 |
| No log | 8.61 | 450 | 3.9420 | 0.0674 | 0.0113 | 0.0674 | 0.0180 | 0.3396 |
| 4.2019 | 9.57 | 500 | 3.9330 | 0.0674 | 0.0116 | 0.0674 | 0.0182 | 0.3423 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1
|