File size: 2,680 Bytes
991aa7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80279e7
 
 
 
 
 
991aa7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80279e7
991aa7a
 
 
 
 
 
 
 
 
 
 
 
 
 
80279e7
 
 
 
 
 
 
 
 
 
991aa7a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9330
- Accuracy: 0.0674
- Precision: 0.0116
- Recall: 0.0674
- F1: 0.0182
- Binary: 0.3423

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.96  | 50   | 4.4099          | 0.0647   | 0.0191    | 0.0647 | 0.0221 | 0.2396 |

| No log        | 1.91  | 100  | 4.3523          | 0.0593   | 0.0190    | 0.0593 | 0.0194 | 0.3019 |

| No log        | 2.87  | 150  | 4.2416          | 0.0701   | 0.0246    | 0.0701 | 0.0235 | 0.3358 |

| No log        | 3.83  | 200  | 4.1412          | 0.0701   | 0.0265    | 0.0701 | 0.0214 | 0.3437 |

| No log        | 4.78  | 250  | 4.0716          | 0.0593   | 0.0069    | 0.0593 | 0.0122 | 0.3334 |

| No log        | 5.74  | 300  | 4.0195          | 0.0701   | 0.0124    | 0.0701 | 0.0186 | 0.3453 |

| No log        | 6.7   | 350  | 3.9850          | 0.0593   | 0.0073    | 0.0593 | 0.0126 | 0.3350 |

| No log        | 7.66  | 400  | 3.9610          | 0.0647   | 0.0097    | 0.0647 | 0.0162 | 0.3388 |

| No log        | 8.61  | 450  | 3.9420          | 0.0674   | 0.0113    | 0.0674 | 0.0180 | 0.3396 |

| 4.2019        | 9.57  | 500  | 3.9330          | 0.0674   | 0.0116    | 0.0674 | 0.0182 | 0.3423 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1