--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hubert-classifier results: [] --- # hubert-classifier This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2561 - Accuracy: 0.2155 - Precision: 0.1870 - Recall: 0.2155 - F1: 0.1453 - Binary: 0.4380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 0.86 | 50 | 4.2865 | 0.0291 | 0.0034 | 0.0291 | 0.0043 | 0.2661 | | No log | 1.72 | 100 | 4.0141 | 0.0460 | 0.0306 | 0.0460 | 0.0187 | 0.3199 | | No log | 2.59 | 150 | 3.8172 | 0.0630 | 0.0204 | 0.0630 | 0.0214 | 0.3378 | | No log | 3.45 | 200 | 3.7045 | 0.0896 | 0.0534 | 0.0896 | 0.0533 | 0.3431 | | No log | 4.31 | 250 | 3.5695 | 0.1308 | 0.0844 | 0.1308 | 0.0796 | 0.3785 | | No log | 5.17 | 300 | 3.4883 | 0.1622 | 0.1140 | 0.1622 | 0.1002 | 0.3954 | | No log | 6.03 | 350 | 3.4447 | 0.1622 | 0.1145 | 0.1622 | 0.1005 | 0.3925 | | No log | 6.9 | 400 | 3.3482 | 0.1671 | 0.0972 | 0.1671 | 0.1026 | 0.4077 | | No log | 7.76 | 450 | 3.3042 | 0.1961 | 0.1424 | 0.1961 | 0.1295 | 0.4228 | | 3.7796 | 8.62 | 500 | 3.2724 | 0.2131 | 0.1898 | 0.2131 | 0.1472 | 0.4370 | | 3.7796 | 9.48 | 550 | 3.2561 | 0.2155 | 0.1870 | 0.2155 | 0.1453 | 0.4380 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1