--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hubert-classifier results: [] --- # hubert-classifier This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4231 - Accuracy: 0.0993 - Precision: 0.0191 - Recall: 0.0993 - F1: 0.0296 - Binary: 0.3603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 0.86 | 50 | 4.4031 | 0.0218 | 0.0042 | 0.0218 | 0.0061 | 0.1886 | | No log | 1.72 | 100 | 4.1752 | 0.0363 | 0.0204 | 0.0363 | 0.0100 | 0.3102 | | No log | 2.59 | 150 | 3.9334 | 0.0363 | 0.0159 | 0.0363 | 0.0125 | 0.3102 | | No log | 3.45 | 200 | 3.7751 | 0.0557 | 0.0270 | 0.0557 | 0.0268 | 0.3266 | | No log | 4.31 | 250 | 3.6877 | 0.0775 | 0.0241 | 0.0775 | 0.0314 | 0.3383 | | No log | 5.17 | 300 | 3.5839 | 0.0920 | 0.0220 | 0.0920 | 0.0329 | 0.3550 | | No log | 6.03 | 350 | 3.5119 | 0.0920 | 0.0219 | 0.0920 | 0.0327 | 0.3586 | | No log | 6.9 | 400 | 3.4851 | 0.0872 | 0.0274 | 0.0872 | 0.0283 | 0.3508 | | No log | 7.76 | 450 | 3.4593 | 0.0920 | 0.0221 | 0.0920 | 0.0312 | 0.3552 | | 3.8751 | 8.62 | 500 | 3.4240 | 0.1017 | 0.0223 | 0.1017 | 0.0328 | 0.3610 | | 3.8751 | 9.48 | 550 | 3.4231 | 0.0993 | 0.0191 | 0.0993 | 0.0296 | 0.3603 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1