|
import copy |
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.parameter import Parameter |
|
|
|
|
|
''' |
|
Much of this code is taken from HuggingFace's OpenAI LM Implementation here: |
|
|
|
https://github.com/huggingface/pytorch-openai-transformer-lm |
|
''' |
|
|
|
|
|
def gelu(x): |
|
return (0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * |
|
(x + 0.044715 * torch.pow(x, 3))))) |
|
|
|
|
|
def swish(x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
ACT_FNS = { |
|
'relu': nn.ReLU, |
|
'swish': swish, |
|
'gelu': gelu |
|
} |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
"Construct a layernorm module in the OpenAI style \ |
|
(epsilon inside the square root)." |
|
|
|
def __init__(self, n_state, e=1e-5): |
|
super(LayerNorm, self).__init__() |
|
self.g = nn.Parameter(torch.ones(n_state)) |
|
self.b = nn.Parameter(torch.zeros(n_state)) |
|
self.e = e |
|
|
|
def forward(self, x): |
|
u = x.mean(-1, keepdim=True) |
|
s = (x - u).pow(2).mean(-1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.e) |
|
return self.g * x + self.b |
|
|
|
|
|
class Conv1D(nn.Module): |
|
def __init__(self, nf, rf, nx): |
|
super(Conv1D, self).__init__() |
|
self.rf = rf |
|
self.nf = nf |
|
if rf == 1: |
|
w = torch.empty(nx, nf) |
|
nn.init.normal_(w, std=0.02) |
|
self.w = Parameter(w) |
|
self.b = Parameter(torch.zeros(nf)) |
|
else: |
|
raise NotImplementedError |
|
|
|
def forward(self, x): |
|
if self.rf == 1: |
|
size_out = x.size()[:-1] + (self.nf,) |
|
x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w) |
|
x = x.view(*size_out) |
|
else: |
|
raise NotImplementedError |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, nx, n_ctx, cfg, scale=False): |
|
super(Attention, self).__init__() |
|
n_state = nx |
|
|
|
assert n_state % cfg.nH == 0 |
|
self.register_buffer('b', torch.tril(torch.ones( |
|
n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) |
|
self.n_head = cfg.nH |
|
self.split_size = n_state |
|
self.scale = scale |
|
self.c_attn = Conv1D(n_state * 3, 1, nx) |
|
self.c_proj = Conv1D(n_state, 1, nx) |
|
self.attn_dropout = nn.Dropout(cfg.adpt) |
|
self.resid_dropout = nn.Dropout(cfg.rdpt) |
|
|
|
|
|
def _attn(self, q, k, v, sequence_mask): |
|
w = torch.matmul(q, k) |
|
if self.scale: |
|
w = w / math.sqrt(v.size(-1)) |
|
|
|
b_subset = self.b[:, :, :w.size(-2), :w.size(-1)] |
|
|
|
if sequence_mask is not None: |
|
b_subset = b_subset * sequence_mask.view( |
|
sequence_mask.size(0), 1, -1) |
|
b_subset = b_subset.permute(1, 0, 2, 3) |
|
|
|
w = w * b_subset + -1e9 * (1 - b_subset) |
|
w = nn.Softmax(dim=-1)(w) |
|
w = self.attn_dropout(w) |
|
return torch.matmul(w, v) |
|
|
|
def merge_heads(self, x): |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) |
|
return x.view(*new_x_shape) |
|
|
|
def split_heads(self, x, k=False): |
|
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) |
|
x = x.view(*new_x_shape) |
|
if k: |
|
return x.permute(0, 2, 3, 1) |
|
else: |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward(self, x, sequence_mask): |
|
x = self.c_attn(x) |
|
query, key, value = x.split(self.split_size, dim=2) |
|
query = self.split_heads(query) |
|
key = self.split_heads(key, k=True) |
|
value = self.split_heads(value) |
|
a = self._attn(query, key, value, sequence_mask) |
|
a = self.merge_heads(a) |
|
a = self.c_proj(a) |
|
a = self.resid_dropout(a) |
|
return a |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, n_state, cfg): |
|
super(MLP, self).__init__() |
|
nx = cfg.hSize |
|
self.c_fc = Conv1D(n_state, 1, nx) |
|
self.c_proj = Conv1D(nx, 1, n_state) |
|
self.act = ACT_FNS[cfg.afn] |
|
self.dropout = nn.Dropout(cfg.rdpt) |
|
|
|
def forward(self, x): |
|
h = self.act(self.c_fc(x)) |
|
h2 = self.c_proj(h) |
|
return self.dropout(h2) |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, n_ctx, cfg, scale=False): |
|
super(Block, self).__init__() |
|
nx = cfg.hSize |
|
self.attn = Attention(nx, n_ctx, cfg, scale) |
|
self.ln_1 = LayerNorm(nx) |
|
self.mlp = MLP(4 * nx, cfg) |
|
self.ln_2 = LayerNorm(nx) |
|
|
|
def forward(self, x, sequence_mask): |
|
a = self.attn(x, sequence_mask) |
|
n = self.ln_1(x + a) |
|
m = self.mlp(n) |
|
h = self.ln_2(n + m) |
|
return h |
|
|
|
|
|
class TransformerModel(nn.Module): |
|
""" Transformer model """ |
|
|
|
def __init__(self, cfg, vocab=40990, n_ctx=512): |
|
super(TransformerModel, self).__init__() |
|
self.vocab = vocab |
|
self.embed = nn.Embedding(vocab, cfg.hSize) |
|
self.drop = nn.Dropout(cfg.edpt) |
|
block = Block(n_ctx, cfg, scale=True) |
|
self.h = nn.ModuleList([copy.deepcopy(block) |
|
for _ in range(cfg.nL)]) |
|
|
|
nn.init.normal_(self.embed.weight, std=0.02) |
|
|
|
def forward(self, x, sequence_mask): |
|
x = x.view(-1, x.size(-2), x.size(-1)) |
|
e = self.embed(x) |
|
|
|
h = e.sum(dim=2) |
|
for block in self.h: |
|
h = block(h, sequence_mask) |
|
return h |
|
|
|
|
|
class LMModel(nn.Module): |
|
""" Transformer with language model head only """ |
|
def __init__(self, cfg, vocab=40990, n_ctx=512, |
|
return_probs=False, return_acts=False): |
|
super(LMModel, self).__init__() |
|
self.transformer = TransformerModel(cfg, vocab=vocab, n_ctx=n_ctx) |
|
self.lm_head = LMHead(self.transformer, cfg, trunc_and_reshape=False) |
|
self.return_probs = return_probs |
|
self.return_acts = return_acts |
|
if self.return_probs or self.return_acts: |
|
pos_emb_mask = torch.zeros(1, 1, vocab) |
|
pos_emb_mask[:, :, -n_ctx:] = -1e12 |
|
self.register_buffer('pos_emb_mask', pos_emb_mask) |
|
|
|
def forward(self, x, sequence_mask=None): |
|
h = self.transformer(x, sequence_mask) |
|
lm_logits = self.lm_head(h) |
|
if self.return_probs: |
|
lm_logits = F.softmax(lm_logits + self.pos_emb_mask, dim=-1) |
|
elif self.return_acts: |
|
lm_logits = lm_logits + self.pos_emb_mask |
|
return lm_logits |
|
|
|
|
|
class LMHead(nn.Module): |
|
""" Language Model Head for the transformer """ |
|
|
|
def __init__(self, model, cfg, trunc_and_reshape=True): |
|
super(LMHead, self).__init__() |
|
self.n_embd = cfg.hSize |
|
embed_shape = model.embed.weight.shape |
|
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) |
|
self.decoder.weight = model.embed.weight |
|
self.trunc_and_reshape = trunc_and_reshape |
|
|
|
def forward(self, h): |
|
|
|
h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) \ |
|
if self.trunc_and_reshape else h |
|
lm_logits = self.decoder(h_trunc) |
|
return lm_logits |
|
|
|
|
|
class dotdict(dict): |
|
"""dot.notation access to dictionary attributes""" |
|
__getattr__ = dict.get |
|
__setattr__ = dict.__setitem__ |
|
__delattr__ = dict.__delitem__ |
|
|
|
|
|
DEFAULT_CONFIG = dotdict({ |
|
'n_embd': 768, |
|
'n_head': 12, |
|
'n_layer': 12, |
|
'embd_pdrop': 0.1, |
|
'attn_pdrop': 0.1, |
|
'resid_pdrop': 0.1, |
|
'afn': 'gelu', |
|
'clf_pdrop': 0.1}) |
|
|