Update README.md
Browse files
README.md
CHANGED
@@ -9,10 +9,9 @@ license: mit
|
|
9 |
For more details and results, please check out our [github](https://github.com/gastruc/AnySat) and [project page](https://gastruc.github.io/projects/omnisat.html).
|
10 |
|
11 |
<p align="center">
|
12 |
-
<img src=".
|
13 |
</p>
|
14 |
|
15 |
-
|
16 |
# Abstract
|
17 |
|
18 |
**AnySat** is a versatile Earth Observation model designed to handle diverse data across resolutions, scales, and modalities. Using a **scale-adaptive joint embedding predictive architecture** (JEPA), AnySat can train in a self-supervised manner on highly heterogeneous datasets.
|
@@ -20,7 +19,7 @@ For more details and results, please check out our [github](https://github.com/g
|
|
20 |
We train a single AnySat model on **GeoPlex**, a collection of 5 multimodal datasets spanning 11 sensors with varying characteristics. In fine-tuning or linear probing, AnySat achieves SOTA or near-SOTA performance for land cover segmentation, crop type classification, change detection, tree species identification, and flood mapping.
|
21 |
|
22 |
<p align="center">
|
23 |
-
<img src=".
|
24 |
</p>
|
25 |
|
26 |
# Key Features
|
@@ -150,7 +149,7 @@ python src/train.py exp=BraDD_AnySAT_LP
|
|
150 |
Our implementation already supports 9 datasets:
|
151 |
|
152 |
<p align="center">
|
153 |
-
<img src=".
|
154 |
</p>
|
155 |
|
156 |
## GeoPlex Datasets
|
@@ -217,10 +216,4 @@ Please use the following bibtex:
|
|
217 |
journal={arXiv preprint arXiv:2412.XXXX},
|
218 |
year={2024}
|
219 |
}
|
220 |
-
```
|
221 |
-
|
222 |
-
# Acknowledgements
|
223 |
-
- The code is conducted on the same base as [OmniSat](https://github.com/gastruc/OmniSat)
|
224 |
-
- The JEPA implementation comes from [JEPA](https://github.com/facebookresearch/ijepa)
|
225 |
-
- The code from Pangaea datasets comes from [Pangaea](https://github.com/VMarsocci/pangaea-bench)
|
226 |
-
<br>
|
|
|
9 |
For more details and results, please check out our [github](https://github.com/gastruc/AnySat) and [project page](https://gastruc.github.io/projects/omnisat.html).
|
10 |
|
11 |
<p align="center">
|
12 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/m1IY9HfCD8NAeykZxqWSb.png" alt="AnySat Architecture" width="500">
|
13 |
</p>
|
14 |
|
|
|
15 |
# Abstract
|
16 |
|
17 |
**AnySat** is a versatile Earth Observation model designed to handle diverse data across resolutions, scales, and modalities. Using a **scale-adaptive joint embedding predictive architecture** (JEPA), AnySat can train in a self-supervised manner on highly heterogeneous datasets.
|
|
|
19 |
We train a single AnySat model on **GeoPlex**, a collection of 5 multimodal datasets spanning 11 sensors with varying characteristics. In fine-tuning or linear probing, AnySat achieves SOTA or near-SOTA performance for land cover segmentation, crop type classification, change detection, tree species identification, and flood mapping.
|
20 |
|
21 |
<p align="center">
|
22 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/mENiGjg5gfKH27vqr8xuB.png" alt="AnySat Teaser" width="500">
|
23 |
</p>
|
24 |
|
25 |
# Key Features
|
|
|
149 |
Our implementation already supports 9 datasets:
|
150 |
|
151 |
<p align="center">
|
152 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/nGGz8kiDdeTJqIPSdrlSz.png" alt="AnySat Datasets" width="500">
|
153 |
</p>
|
154 |
|
155 |
## GeoPlex Datasets
|
|
|
216 |
journal={arXiv preprint arXiv:2412.XXXX},
|
217 |
year={2024}
|
218 |
}
|
219 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|