gabrielandrade2
commited on
Commit
•
348db8b
1
Parent(s):
e4e53ba
Update README, add example code
Browse files- README.md +109 -1
- example.py +42 -0
- requirements.txt +28 -0
README.md
CHANGED
@@ -1,3 +1,111 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: ja
|
3 |
+
license: gpl-3.0
|
4 |
---
|
5 |
+
|
6 |
+
A model used to estimate the start and end of a Named Entity (NE) span based on a Point annotation, as used in the paper "Is boundary annotation necessary? Evaluating boundary-free approaches to improve clinical named entity annotation efficiency".
|
7 |
+
|
8 |
+
Basically, the goal of this model is to convert a point annotation to a corresponding span annotation with the correct span.
|
9 |
+
|
10 |
+
The model locates an identifier token (⧫) and based on its surround context estimates where the NE concept starts and ends.
|
11 |
+
|
12 |
+
The model is trained to estimate the spans of diseases and symptom names in Japanese medical texts.
|
13 |
+
|
14 |
+
## Concepts
|
15 |
+
|
16 |
+
### Point annotation
|
17 |
+
|
18 |
+
Unlike span-based paradigms, a point annotation is composed by a single position within the NE span.
|
19 |
+
It is a simple and fast way to annotate NEs, but it introduces ambiguity in the information captured by the annotation.
|
20 |
+
|
21 |
+
On this repository implementation, a point annotation is represented by a lozenge character (⧫).
|
22 |
+
|
23 |
+
Example:
|
24 |
+
```
|
25 |
+
The patient has a history of dia⧫betes.
|
26 |
+
```
|
27 |
+
|
28 |
+
### Span annotation
|
29 |
+
|
30 |
+
A span annotation is composed by the two markings, identifying both start and end positions of the NE span.
|
31 |
+
|
32 |
+
The implementation on this repository is based on the span annotation schema defined by [Yada et al. (2020)](https://aclanthology.org/2020.lrec-1.561/).
|
33 |
+
|
34 |
+
Example:
|
35 |
+
```
|
36 |
+
The patient has a history of <C>diabetes</C>.
|
37 |
+
```
|
38 |
+
|
39 |
+
## Model architecture
|
40 |
+
|
41 |
+
This model was fine-tuned on top of [cl-tohoku/bert-base-japanese-char-v2] (https://huggingface.co/cl-tohoku/bert-base-japanese-char-v2).
|
42 |
+
|
43 |
+
The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
|
44 |
+
|
45 |
+
To be executed, this model requires the following dependencies:
|
46 |
+
- fugashi
|
47 |
+
- unidic-lite
|
48 |
+
|
49 |
+
## Training data
|
50 |
+
|
51 |
+
The model was finetuned using a dataset of Japanese medical texts (which is not available pubicly), comprised of 1027 synthetic medication history notes generated through crowd-sourcing.
|
52 |
+
|
53 |
+
Ten experienced dispensing pharmacists were hired as writers to craft the corpus. Each writer was assigned one of 285 drug names and tasked with creating a ``typical'' clinical narrative. This corpus was later fully annotated for symptoms and disease names.
|
54 |
+
|
55 |
+
Each annotation received a ⧫ token within its span based on a Truncated normal distribution.
|
56 |
+
|
57 |
+
The model was then trained to identify this token and output a span corresponding to the surrounding concept.
|
58 |
+
|
59 |
+
## Usage
|
60 |
+
|
61 |
+
The `requirements.txt` file contains all the dependencies needed to run the example code.
|
62 |
+
|
63 |
+
```python
|
64 |
+
import mojimoji
|
65 |
+
import numpy as np
|
66 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
67 |
+
|
68 |
+
import iob_util #pip install git+https://github.com/gabrielandrade2/IOB-util.git
|
69 |
+
|
70 |
+
model_name = "gabrielandrade2/point-to-span-estimation"
|
71 |
+
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
74 |
+
|
75 |
+
# Point-annotated text
|
76 |
+
text = "肥大型心⧫筋症、心房⧫細動に対してWF投与が開始となった。\
|
77 |
+
治療経過中に非持続性心⧫室頻拍が認められたためアミオダロンが併用となった。"
|
78 |
+
|
79 |
+
# Convert to zenkaku and tokenize
|
80 |
+
text = mojimoji.han_to_zen(text)
|
81 |
+
tokenized = tokenizer.tokenize(text)
|
82 |
+
|
83 |
+
# Encode text
|
84 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
85 |
+
|
86 |
+
# Predict spans
|
87 |
+
output = model(input_ids)
|
88 |
+
logits = output[0].detach().cpu().numpy()
|
89 |
+
tags = np.argmax(logits, axis=2)[:, :].tolist()[0]
|
90 |
+
|
91 |
+
# Convert model output to IOB format
|
92 |
+
id2label = model.config.id2label
|
93 |
+
tags = [id2label[t] for t in tags]
|
94 |
+
|
95 |
+
# Convert input_ids back to chars
|
96 |
+
tokens = [tokenizer.convert_ids_to_tokens(t) for t in input_ids][0]
|
97 |
+
|
98 |
+
# Remove model special tokens (CLS, SEP, PAD)
|
99 |
+
tags = [y for x, y in zip(tokens, tags) if x not in ['[CLS]', '[SEP]', '[PAD]']]
|
100 |
+
tokens = [x for x in tokens if x not in ['[CLS]', '[SEP]', '[PAD]']]
|
101 |
+
|
102 |
+
# Convert from IOB to XML tag format
|
103 |
+
xml_text = iob_util.convert_iob_to_xml(tokens, tags)
|
104 |
+
xml_text = xml_text.replace('⧫', '')
|
105 |
+
print(xml_text)
|
106 |
+
```
|
107 |
+
|
108 |
+
### Output
|
109 |
+
```xml
|
110 |
+
<C>肥大型心筋症</C>、<C>心房細動</C>に対してWF投与が開始となった。治療経過中に<C>非持続性心室頻拍</C>が認められたためアミオダロンが併用となった。
|
111 |
+
```
|
example.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mojimoji
|
2 |
+
import numpy as np
|
3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
+
|
5 |
+
import iob_util #pip install git+https://github.com/gabrielandrade2/IOB-util.git
|
6 |
+
|
7 |
+
model_name = "gabrielandrade2/point-to-span-estimation"
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Point-annotated text
|
13 |
+
text = "肥大型心⧫筋症、心房⧫細動に対してWF投与が開始となった。\
|
14 |
+
治療経過中に非持続性心⧫室頻拍が認められたためアミオダロンが併用となった。"
|
15 |
+
|
16 |
+
# Convert to zenkaku and tokenize
|
17 |
+
text = mojimoji.han_to_zen(text)
|
18 |
+
tokenized = tokenizer.tokenize(text)
|
19 |
+
|
20 |
+
# Encode text
|
21 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
22 |
+
|
23 |
+
# Predict spans
|
24 |
+
output = model(input_ids)
|
25 |
+
logits = output[0].detach().cpu().numpy()
|
26 |
+
tags = np.argmax(logits, axis=2)[:, :].tolist()[0]
|
27 |
+
|
28 |
+
# Convert model output to IOB format
|
29 |
+
id2label = model.config.id2label
|
30 |
+
tags = [id2label[t] for t in tags]
|
31 |
+
|
32 |
+
# Convert input_ids back to chars
|
33 |
+
tokens = [tokenizer.convert_ids_to_tokens(t) for t in input_ids][0]
|
34 |
+
|
35 |
+
# Remove model special tokens (CLS, SEP, PAD)
|
36 |
+
tags = [y for x, y in zip(tokens, tags) if x not in ['[CLS]', '[SEP]', '[PAD]']]
|
37 |
+
tokens = [x for x in tokens if x not in ['[CLS]', '[SEP]', '[PAD]']]
|
38 |
+
|
39 |
+
# Convert from IOB to XML tag format
|
40 |
+
xml_text = iob_util.convert_iob_to_xml(tokens, tags)
|
41 |
+
xml_text = xml_text.replace('⧫', '')
|
42 |
+
print(xml_text)
|
requirements.txt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
certifi==2024.2.2
|
2 |
+
charset-normalizer==3.3.2
|
3 |
+
filelock==3.13.1
|
4 |
+
fsspec==2024.2.0
|
5 |
+
fugashi==1.3.0
|
6 |
+
huggingface-hub==0.20.3
|
7 |
+
idna==3.6
|
8 |
+
iob_util @ git+https://github.com/gabrielandrade2/IOB-util.git@b5d522aa50238a25cdda19f2cf6908833acd6d64
|
9 |
+
Jinja2==3.1.3
|
10 |
+
lxml==5.1.0
|
11 |
+
MarkupSafe==2.1.5
|
12 |
+
mojimoji==0.0.13
|
13 |
+
mpmath==1.3.0
|
14 |
+
networkx==3.2.1
|
15 |
+
numpy==1.26.4
|
16 |
+
packaging==23.2
|
17 |
+
PyYAML==6.0.1
|
18 |
+
regex==2023.12.25
|
19 |
+
requests==2.31.0
|
20 |
+
safetensors==0.4.2
|
21 |
+
sympy==1.12
|
22 |
+
tokenizers==0.15.2
|
23 |
+
torch==2.2.0
|
24 |
+
tqdm==4.66.2
|
25 |
+
transformers==4.38.1
|
26 |
+
typing_extensions==4.9.0
|
27 |
+
unidic-lite==1.0.8
|
28 |
+
urllib3==2.2.1
|