File size: 12,495 Bytes
458f5ed b61da2d 458f5ed fbea1e5 b61da2d 458f5ed b61da2d 458f5ed 9d71359 458f5ed b61da2d fbea1e5 b61da2d fbea1e5 b61da2d 458f5ed b61da2d fbea1e5 458f5ed fbea1e5 d4c8fd7 9c78a7a d4c8fd7 fbea1e5 458f5ed b61da2d 9d71359 458f5ed b61da2d 458f5ed b61da2d 458f5ed b61da2d 458f5ed b61da2d 458f5ed b61da2d 458f5ed 9d71359 458f5ed b61da2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
---
license: apache-2.0
datasets:
- andreabac3/Quora-Italian-Fauno-Baize
- andreabac3/StackOverflow-Italian-Fauno-Baize
- andreabac3/MedQuaAD-Italian-Fauno-Baize
language:
- it
- en
pipeline_tag: text-generation
---
# cerbero-7b Italian LLM ๐
> ๐ **New Release**: **cerbero-7b-openchat** our latest SOTA model based on [**openchat3.5**](https://github.com/imoneoi/openchat), delivering performance **on par with** or **superior** to **ChatGPT 3.5**!
> ๐ฅ The research paper unveiling the secrets behind **cerbero-7b** is now available on [arXiv](https://arxiv.org/abs/2311.15698)!
> ๐ข **cerbero-7b** is the first **100% Free** and Open Source **Italian Large Language Model** (LLM) ready to be used for **research** or **commercial applications**.
**Try an online demo [here](https://huggingface.co/spaces/galatolo/chat-with-cerbero-7b)** (quantized demo running on CPU, a lot less powerful than the original cerbero-7b)
<p align="center">
<img width="300" height="300" src="./README.md.d/cerbero.png">
</p>
Built on top of [**mistral-7b**](https://mistral.ai/news/announcing-mistral-7b/), which outperforms Llama2 13B across all benchmarks and surpasses Llama1 34B in numerous metrics.
**cerbero-7b** is specifically crafted to fill the void in Italy's AI landscape.
A **cambrian explosion** of **Italian Language Models** is essential for building advanced AI architectures that can cater to the diverse needs of the population.
**cerbero-7b**, alongside companions like [**Camoscio**](https://github.com/teelinsan/camoscio) and [**Fauno**](https://github.com/RSTLess-research/Fauno-Italian-LLM), aims to help **kick-start** this **revolution** in Italy, ushering in an era where sophisticated **AI solutions** can seamlessly interact with and understand the intricacies of the **Italian language**, thereby empowering **innovation** across **industries** and fostering a deeper **connection** between **technology** and the **people** it serves.
**cerbero-7b** is released under the **permissive** Apache 2.0 **license**, allowing **unrestricted usage**, even **for commercial applications**.
## Model Evaluation Results ๐
The `cerbero-7b` model has been rigorously evaluated across several benchmarks to demonstrate its proficiency in understanding and generating Italian text. Below are the summarized results showcasing its performance:
### SQuAD-it Evaluation
The Stanford Question Answering Dataset (SQuAD) in Italian (SQuAD-it) is used to evaluate the model's reading comprehension and question-answering capabilities. The following table presents the F1 score and Exact Match (EM) metrics:
| Model | F1 Score | Exact Match (EM) |
|----------------------------------------------|--------------|----------------------|
| **cerbero-7b-openchat** | **74.09%** | **56.0%** |
| **cerbero-7b** | **72.55%** | **55.6%** |
| Fauno | 44.46% | 0.00% |
| Camoscio | 37.42% | 0.00% |
| mistral-7b | 15.55% | 8.50% |
### EVALITA Benchmark Results
EVALITA benchmarks assess the model's performance in tasks like toxicity detection, irony detection, and sentiment analysis. The table below shows the F1 scores for these tasks:
| Model | Toxicity Detection | Irony Detection | Sentiment Analysis |
|----------------------------------------------|--------------------|-----------------|--------------------|
| **cerbero-7b-openchat** | **63.33%** | **69.16%** | **66.89%** |
| **cerbero-7b** | **63.04%** | **48.51%** | **61.80%** |
| Fauno | 33.84% | 39.17% | 12.23% |
| Camoscio | 38.18% | 39.65% | 13.33% |
| mistral-7b | 34.16% | 34.16% | 12.14% |
## Why Cerbero? ๐ค
The name "Cerbero," inspired by the three-headed dog that guards the gates of the Underworld in Greek mythology, encapsulates the essence of our model, drawing strength from three foundational pillars:
- **Base Model: mistral-7b** ๐๏ธ
cerbero-7b builds upon the formidable **mistral-7b** as its base model. This choice ensures a robust foundation, leveraging the power and capabilities of a cutting-edge language model.
- **Datasets: Cerbero Dataset** ๐
The Cerbero Dataset is a groundbreaking collection specifically curated to enhance the proficiency of cerbero-7b in understanding and generating Italian text. This dataset is a product of an innovative method combining dynamic self-chat mechanisms with advanced Large Language Model (LLM) technology. Refer to the [paper](https://arxiv.org/abs/2311.15698) for more details.
- **Licensing: Apache 2.0** ๐๏ธ
Released under the **permissive Apache 2.0 license**, cerbero-7b promotes openness and collaboration. This licensing choice empowers developers with the freedom for unrestricted usage, fostering a community-driven approach to advancing AI in Italy and beyond.
## Models ๐งฌ
**cerbero-7b** is available in various flavors, each tailored for specific applications and use cases. Below is a table listing these versions along with their respective training datasets and base models:
| Model Name | Training Dataset | Base Model | Huggingface Model | Llama.cpp and Quantized Model |
|-------------------------|-------------------|-------------|-------------------|-------------------------------|
| cerbero-7b | Cerbero Dataset | mistral-7b | [link](https://huggingface.co/galatolo/cerbero-7b) | [link](https://huggingface.co/galatolo/cerbero-7b-gguf) |
| cerbero-7b-openchat | Cerbero Dataset | openchat3.5 | [link](https://huggingface.co/galatolo/cerbero-7b-openchat) | [link](https://huggingface.co/galatolo/cerbero-7b-openchat-gguf) |
Each of these models brings its unique strengths to the table, making **cerbero-7b** a versatile tool for both research and commercial applications in the Italian language AI domain.
We are committed to continuously enhancing **cerbero-7b**. Our team plans to keep training and releasing new models as advancements in the 7b SOTA occur. This ensures that **cerbero-7b** remains at the forefront of AI technology, offering the most advanced and efficient solutions in the Italian language AI sector.
If you do not have enough RAM to fit the `float32` model (for example when using Colab) we provide for each model a `float16` version using the `revision="float16"` argument
```python
model = AutoModelForCausalLM.from_pretrained("galatolo/cerbero-7b", revision="float16")
```
## Training Details ๐
**cerbero-7b** is a **fully fine-tuned** LLM, distinguishing itself from LORA or QLORA fine-tunes.
The model is trained on an expansive Italian Large Language Model (LLM) using synthetic datasets generated through dynamic self-chat on a large context window of **8192 tokens**
### Dataset Composition ๐
> ๐ข Details on the **Cerbero Dataset** will be updated shortly!
### Training Setup โ๏ธ
**cerbero-7b** is trained on an NVIDIA DGX H100:
- **Hardware:** Utilizing 8xH100 GPUs, each with 80 GB VRAM. ๐ฅ๏ธ
- **Parallelism:** DeepSpeed Zero stage 1 parallelism for optimal training efficiency.โจ
The model has been trained for **1 epoch**, ensuring a convergence of knowledge and proficiency in handling diverse linguistic tasks.
## Prompt Format
**cerbero-7b** is trained on full conversations using the following prompt format:
```
[|Umano|] First human message
[|Assistente|] First AI reply
[|Umano|] Second human message
[|Assistente|] Second AI reply
```
When crafting prompts, ensure to conclude with the `[|Assistente|]` tag, signaling the AI to generate a response.
Use `[|Umano|]` as stop word.
For example:
```
[|Umano|] Come posso distinguere un AI da un umano?
[|Assistente|]
```
While it's possible to include a brief system message at the start of your prompt, remember that the training data for **cerbero-7b** **does not** contain such **system messages**. Hence, it's recommended to minimize or avoid including them for optimal model performance.
## Getting Started ๐
You can load **cerbero-7b** (or **cerbero-7b-openchat**) using [๐คtransformers](https://huggingface.co/docs/transformers/index)
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("galatolo/cerbero-7b")
tokenizer = AutoTokenizer.from_pretrained("galatolo/cerbero-7b")
prompt = """Questa รจ una conversazione tra un umano ed un assistente AI.
[|Umano|] Come posso distinguere un AI da un umano?
[|Assistente|]"""
input_ids = tokenizer(prompt, return_tensors='pt').input_ids
with torch.no_grad():
output_ids = model.generate(input_ids, max_new_tokens=128)
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(generated_text)
```
### GGUF and llama.cpp
**cerbero-7b** is fully **compatibile** with [llama.cpp](https://github.com/ggerganov/llama.cpp)
You can find the **original** and **quantized** versions of **cerbero-7b** in the `gguf` format [here](https://huggingface.co/galatolo/cerbero-7b-gguf/tree/main)
```python
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
llm = Llama(
model_path=hf_hub_download(
repo_id="galatolo/cerbero-7b-gguf",
filename="ggml-model-f16.gguf",
),
n_ctx=4086,
)
llm.generate("""Questa รจ una conversazione tra un umano ed un assistente AI.
[|Umano|] Come posso distinguere un AI da un umano?
[|Assistente|]""")
```
## Citation ๐
If you use **cerbero-7b** in your research, please cite our paper:
```bibtex
@article{galatolo2023cerbero,
title={Cerbero-7B: A Leap Forward in Language-Specific LLMs Through Enhanced Chat Corpus Generation and Evaluation},
author={Galatolo, Federico A and Cimino, Mario GCA},
journal={arXiv preprint arXiv:2311.15698},
year={2023}
}
```
## Training Details ๐
**cerbero-7b** is a **fully fine-tuned** LLM, distinguishing itself from LORA or QLORA fine-tunes.
The model is trained on an expansive Italian Large Language Model (LLM) using synthetic datasets generated through dynamic self-chat on a large context window of **8192 tokens**
### Dataset Composition ๐
> ๐ข Details on the **Cerbero Dataset** will be updated shortly!
### Training Setup โ๏ธ
**cerbero-7b** is trained on an NVIDIA DGX H100:
- **Hardware:** Utilizing 8xH100 GPUs, each with 80 GB VRAM. ๐ฅ๏ธ
- **Parallelism:** DeepSpeed Zero stage 1 parallelism for optimal training efficiency.โจ
The model has been trained for **1 epoch**, ensuring a convergence of knowledge and proficiency in handling diverse linguistic tasks.
## Getting Started ๐
You can load **cerbero-7b** using [๐คtransformers](https://huggingface.co/docs/transformers/index)
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("galatolo/cerbero-7b")
tokenizer = AutoTokenizer.from_pretrained("galatolo/cerbero-7b")
prompt = """Questa รจ una conversazione tra un umano ed un assistente AI.
[|Umano|] Come posso distinguere un AI da un umano?
[|Assistente|]"""
input_ids = tokenizer(prompt, return_tensors='pt').input_ids
with torch.no_grad():
output_ids = model.generate(input_ids, max_new_tokens=128)
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(generated_text)
```
### GGUF and llama.cpp
**cerbero-7b** is fully **compatibile** with [llama.cpp](https://github.com/ggerganov/llama.cpp)
You can find the **original** and **quantized** versions of **cerbero-7b** in the `gguf` format [here](https://huggingface.co/galatolo/cerbero-7b-gguf/tree/main)
```python
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
llm = Llama(
model_path=hf_hub_download(
repo_id="galatolo/cerbero-7b-gguf",
filename="ggml-model-Q4_K.gguf",
),
n_ctx=4086,
)
llm.generate("""Questa รจ una conversazione tra un umano ed un assistente AI.
[|Umano|] Come posso distinguere un AI da un umano?
[|Assistente|]""")
```
|