abdouaziiz commited on
Commit
021eafd
1 Parent(s): 9bd1542

Upload 6 files

Browse files
README.md CHANGED
@@ -1,3 +1,78 @@
1
  ---
2
- license: creativeml-openrail-m
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - audio-classification
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - f1
10
+ model-index:
11
+ - name: hubert-base-ls960
12
+ results: []
13
  ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hubert-base-ls960
19
+
20
+ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the galsenai/waxal_dataset dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 2.1857
23
+ - Accuracy: 0.6442
24
+ - Precision: 0.8369
25
+ - F1: 0.7121
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 30
46
+ - eval_batch_size: 30
47
+ - seed: 0
48
+ - gradient_accumulation_steps: 4
49
+ - total_train_batch_size: 120
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 32.0
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|
59
+ | 4.523 | 2.53 | 500 | 5.1547 | 0.0205 | 0.0047 | 0.0037 |
60
+ | 3.4187 | 5.05 | 1000 | 4.6287 | 0.0337 | 0.0256 | 0.0163 |
61
+ | 2.3533 | 7.58 | 1500 | 4.2550 | 0.0944 | 0.1033 | 0.0641 |
62
+ | 1.7145 | 10.1 | 2000 | 3.9540 | 0.1095 | 0.2091 | 0.0964 |
63
+ | 1.3245 | 12.63 | 2500 | 3.8557 | 0.1758 | 0.3609 | 0.1859 |
64
+ | 1.0729 | 15.15 | 3000 | 3.7411 | 0.2247 | 0.4918 | 0.2537 |
65
+ | 0.8955 | 17.68 | 3500 | 3.2683 | 0.3789 | 0.6162 | 0.4256 |
66
+ | 0.7697 | 20.2 | 4000 | 2.8749 | 0.4612 | 0.7106 | 0.5171 |
67
+ | 0.6864 | 22.73 | 4500 | 2.7251 | 0.5169 | 0.7437 | 0.5779 |
68
+ | 0.6061 | 25.25 | 5000 | 2.5061 | 0.5631 | 0.8043 | 0.6335 |
69
+ | 0.5777 | 27.78 | 5500 | 2.2830 | 0.6177 | 0.8183 | 0.6837 |
70
+ | 0.5304 | 30.3 | 6000 | 2.1857 | 0.6442 | 0.8369 | 0.7121 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.27.0.dev0
76
+ - Pytorch 1.11.0+cu113
77
+ - Datasets 2.9.1.dev0
78
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "eval_accuracy": 0.6441834028040925,
4
+ "eval_f1": 0.7121017502331707,
5
+ "eval_loss": 2.1857309341430664,
6
+ "eval_precision": 0.8368800792283315,
7
+ "eval_runtime": 108.4652,
8
+ "eval_samples_per_second": 24.33,
9
+ "eval_steps_per_second": 0.811,
10
+ "train_loss": 1.4852149317962955,
11
+ "train_runtime": 31381.271,
12
+ "train_samples_per_second": 24.216,
13
+ "train_steps_per_second": 0.202
14
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "eval_accuracy": 0.6441834028040925,
4
+ "eval_f1": 0.7121017502331707,
5
+ "eval_loss": 2.1857309341430664,
6
+ "eval_precision": 0.8368800792283315,
7
+ "eval_runtime": 108.4652,
8
+ "eval_samples_per_second": 24.33,
9
+ "eval_steps_per_second": 0.811
10
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "train_loss": 1.4852149317962955,
4
+ "train_runtime": 31381.271,
5
+ "train_samples_per_second": 24.216,
6
+ "train_steps_per_second": 0.202
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6441834028040925,
3
+ "best_model_checkpoint": "hubert-base-ls960/checkpoint-6000",
4
+ "epoch": 32.0,
5
+ "global_step": 6336,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 2.53,
12
+ "learning_rate": 2.3659305993690853e-05,
13
+ "loss": 4.523,
14
+ "step": 500
15
+ },
16
+ {
17
+ "epoch": 2.53,
18
+ "eval_accuracy": 0.02046229632436529,
19
+ "eval_f1": 0.003726162630911285,
20
+ "eval_loss": 5.154743194580078,
21
+ "eval_precision": 0.0047326994458260765,
22
+ "eval_runtime": 111.372,
23
+ "eval_samples_per_second": 23.695,
24
+ "eval_steps_per_second": 0.79,
25
+ "step": 500
26
+ },
27
+ {
28
+ "epoch": 5.05,
29
+ "learning_rate": 2.8074359873728517e-05,
30
+ "loss": 3.4187,
31
+ "step": 1000
32
+ },
33
+ {
34
+ "epoch": 5.05,
35
+ "eval_accuracy": 0.03372489579386131,
36
+ "eval_f1": 0.01633580104617213,
37
+ "eval_loss": 4.628676891326904,
38
+ "eval_precision": 0.025641939245838297,
39
+ "eval_runtime": 106.2725,
40
+ "eval_samples_per_second": 24.832,
41
+ "eval_steps_per_second": 0.828,
42
+ "step": 1000
43
+ },
44
+ {
45
+ "epoch": 7.58,
46
+ "learning_rate": 2.5443703963521573e-05,
47
+ "loss": 2.3533,
48
+ "step": 1500
49
+ },
50
+ {
51
+ "epoch": 7.58,
52
+ "eval_accuracy": 0.09435392194012884,
53
+ "eval_f1": 0.06405678590079675,
54
+ "eval_loss": 4.254951477050781,
55
+ "eval_precision": 0.10330351479105922,
56
+ "eval_runtime": 108.1414,
57
+ "eval_samples_per_second": 24.403,
58
+ "eval_steps_per_second": 0.814,
59
+ "step": 1500
60
+ },
61
+ {
62
+ "epoch": 10.1,
63
+ "learning_rate": 2.2813048053314627e-05,
64
+ "loss": 1.7145,
65
+ "step": 2000
66
+ },
67
+ {
68
+ "epoch": 10.1,
69
+ "eval_accuracy": 0.10951117847669571,
70
+ "eval_f1": 0.09636838131822689,
71
+ "eval_loss": 3.953977108001709,
72
+ "eval_precision": 0.20908275360175174,
73
+ "eval_runtime": 101.3178,
74
+ "eval_samples_per_second": 26.047,
75
+ "eval_steps_per_second": 0.869,
76
+ "step": 2000
77
+ },
78
+ {
79
+ "epoch": 12.63,
80
+ "learning_rate": 2.0182392143107683e-05,
81
+ "loss": 1.3245,
82
+ "step": 2500
83
+ },
84
+ {
85
+ "epoch": 12.63,
86
+ "eval_accuracy": 0.17582417582417584,
87
+ "eval_f1": 0.1859427403647579,
88
+ "eval_loss": 3.855651617050171,
89
+ "eval_precision": 0.3608930277105155,
90
+ "eval_runtime": 107.9879,
91
+ "eval_samples_per_second": 24.438,
92
+ "eval_steps_per_second": 0.815,
93
+ "step": 2500
94
+ },
95
+ {
96
+ "epoch": 15.15,
97
+ "learning_rate": 1.7551736232900737e-05,
98
+ "loss": 1.0729,
99
+ "step": 3000
100
+ },
101
+ {
102
+ "epoch": 15.15,
103
+ "eval_accuracy": 0.224706328154604,
104
+ "eval_f1": 0.2537469884726095,
105
+ "eval_loss": 3.74106764793396,
106
+ "eval_precision": 0.4918090735633196,
107
+ "eval_runtime": 107.1954,
108
+ "eval_samples_per_second": 24.619,
109
+ "eval_steps_per_second": 0.821,
110
+ "step": 3000
111
+ },
112
+ {
113
+ "epoch": 17.68,
114
+ "learning_rate": 1.4921080322693792e-05,
115
+ "loss": 0.8955,
116
+ "step": 3500
117
+ },
118
+ {
119
+ "epoch": 17.68,
120
+ "eval_accuracy": 0.378931413414172,
121
+ "eval_f1": 0.42563545406792835,
122
+ "eval_loss": 3.2683181762695312,
123
+ "eval_precision": 0.6161701808557754,
124
+ "eval_runtime": 108.9972,
125
+ "eval_samples_per_second": 24.212,
126
+ "eval_steps_per_second": 0.807,
127
+ "step": 3500
128
+ },
129
+ {
130
+ "epoch": 20.2,
131
+ "learning_rate": 1.2290424412486847e-05,
132
+ "loss": 0.7697,
133
+ "step": 4000
134
+ },
135
+ {
136
+ "epoch": 20.2,
137
+ "eval_accuracy": 0.46115953012504735,
138
+ "eval_f1": 0.5171156262633545,
139
+ "eval_loss": 2.874896764755249,
140
+ "eval_precision": 0.7105984753027313,
141
+ "eval_runtime": 104.5833,
142
+ "eval_samples_per_second": 25.233,
143
+ "eval_steps_per_second": 0.841,
144
+ "step": 4000
145
+ },
146
+ {
147
+ "epoch": 22.73,
148
+ "learning_rate": 9.659768502279902e-06,
149
+ "loss": 0.6864,
150
+ "step": 4500
151
+ },
152
+ {
153
+ "epoch": 22.73,
154
+ "eval_accuracy": 0.5168624478969307,
155
+ "eval_f1": 0.5779425289838436,
156
+ "eval_loss": 2.7250964641571045,
157
+ "eval_precision": 0.7436539303592055,
158
+ "eval_runtime": 102.232,
159
+ "eval_samples_per_second": 25.814,
160
+ "eval_steps_per_second": 0.861,
161
+ "step": 4500
162
+ },
163
+ {
164
+ "epoch": 25.25,
165
+ "learning_rate": 7.029112592072957e-06,
166
+ "loss": 0.6061,
167
+ "step": 5000
168
+ },
169
+ {
170
+ "epoch": 25.25,
171
+ "eval_accuracy": 0.5630920803334597,
172
+ "eval_f1": 0.6334793930128474,
173
+ "eval_loss": 2.506129264831543,
174
+ "eval_precision": 0.8042779660767879,
175
+ "eval_runtime": 108.8606,
176
+ "eval_samples_per_second": 24.242,
177
+ "eval_steps_per_second": 0.808,
178
+ "step": 5000
179
+ },
180
+ {
181
+ "epoch": 27.78,
182
+ "learning_rate": 4.398456681866012e-06,
183
+ "loss": 0.5777,
184
+ "step": 5500
185
+ },
186
+ {
187
+ "epoch": 27.78,
188
+ "eval_accuracy": 0.6176582038651004,
189
+ "eval_f1": 0.6836726868522811,
190
+ "eval_loss": 2.28301739692688,
191
+ "eval_precision": 0.8183499709851196,
192
+ "eval_runtime": 109.1511,
193
+ "eval_samples_per_second": 24.177,
194
+ "eval_steps_per_second": 0.806,
195
+ "step": 5500
196
+ },
197
+ {
198
+ "epoch": 30.3,
199
+ "learning_rate": 1.767800771659067e-06,
200
+ "loss": 0.5304,
201
+ "step": 6000
202
+ },
203
+ {
204
+ "epoch": 30.3,
205
+ "eval_accuracy": 0.6441834028040925,
206
+ "eval_f1": 0.7121017502331707,
207
+ "eval_loss": 2.1857309341430664,
208
+ "eval_precision": 0.8368800792283315,
209
+ "eval_runtime": 110.4001,
210
+ "eval_samples_per_second": 23.904,
211
+ "eval_steps_per_second": 0.797,
212
+ "step": 6000
213
+ },
214
+ {
215
+ "epoch": 32.0,
216
+ "step": 6336,
217
+ "total_flos": 3.804433776973221e+19,
218
+ "train_loss": 1.4852149317962955,
219
+ "train_runtime": 31381.271,
220
+ "train_samples_per_second": 24.216,
221
+ "train_steps_per_second": 0.202
222
+ }
223
+ ],
224
+ "max_steps": 6336,
225
+ "num_train_epochs": 32,
226
+ "total_flos": 3.804433776973221e+19,
227
+ "trial_name": null,
228
+ "trial_params": null
229
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c39e7ce25cf00c9024118f641c2539b50197c6f425ee258eb1149ae68c627f12
3
+ size 3503