abdouaziiz
commited on
Commit
•
021eafd
1
Parent(s):
9bd1542
Upload 6 files
Browse files- README.md +76 -1
- all_results.json +14 -0
- eval_results.json +10 -0
- train_results.json +7 -0
- trainer_state.json +229 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,78 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- audio-classification
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: hubert-base-ls960
|
12 |
+
results: []
|
13 |
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# hubert-base-ls960
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the galsenai/waxal_dataset dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 2.1857
|
23 |
+
- Accuracy: 0.6442
|
24 |
+
- Precision: 0.8369
|
25 |
+
- F1: 0.7121
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 3e-05
|
45 |
+
- train_batch_size: 30
|
46 |
+
- eval_batch_size: 30
|
47 |
+
- seed: 0
|
48 |
+
- gradient_accumulation_steps: 4
|
49 |
+
- total_train_batch_size: 120
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 32.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|
|
59 |
+
| 4.523 | 2.53 | 500 | 5.1547 | 0.0205 | 0.0047 | 0.0037 |
|
60 |
+
| 3.4187 | 5.05 | 1000 | 4.6287 | 0.0337 | 0.0256 | 0.0163 |
|
61 |
+
| 2.3533 | 7.58 | 1500 | 4.2550 | 0.0944 | 0.1033 | 0.0641 |
|
62 |
+
| 1.7145 | 10.1 | 2000 | 3.9540 | 0.1095 | 0.2091 | 0.0964 |
|
63 |
+
| 1.3245 | 12.63 | 2500 | 3.8557 | 0.1758 | 0.3609 | 0.1859 |
|
64 |
+
| 1.0729 | 15.15 | 3000 | 3.7411 | 0.2247 | 0.4918 | 0.2537 |
|
65 |
+
| 0.8955 | 17.68 | 3500 | 3.2683 | 0.3789 | 0.6162 | 0.4256 |
|
66 |
+
| 0.7697 | 20.2 | 4000 | 2.8749 | 0.4612 | 0.7106 | 0.5171 |
|
67 |
+
| 0.6864 | 22.73 | 4500 | 2.7251 | 0.5169 | 0.7437 | 0.5779 |
|
68 |
+
| 0.6061 | 25.25 | 5000 | 2.5061 | 0.5631 | 0.8043 | 0.6335 |
|
69 |
+
| 0.5777 | 27.78 | 5500 | 2.2830 | 0.6177 | 0.8183 | 0.6837 |
|
70 |
+
| 0.5304 | 30.3 | 6000 | 2.1857 | 0.6442 | 0.8369 | 0.7121 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.27.0.dev0
|
76 |
+
- Pytorch 1.11.0+cu113
|
77 |
+
- Datasets 2.9.1.dev0
|
78 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 32.0,
|
3 |
+
"eval_accuracy": 0.6441834028040925,
|
4 |
+
"eval_f1": 0.7121017502331707,
|
5 |
+
"eval_loss": 2.1857309341430664,
|
6 |
+
"eval_precision": 0.8368800792283315,
|
7 |
+
"eval_runtime": 108.4652,
|
8 |
+
"eval_samples_per_second": 24.33,
|
9 |
+
"eval_steps_per_second": 0.811,
|
10 |
+
"train_loss": 1.4852149317962955,
|
11 |
+
"train_runtime": 31381.271,
|
12 |
+
"train_samples_per_second": 24.216,
|
13 |
+
"train_steps_per_second": 0.202
|
14 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 32.0,
|
3 |
+
"eval_accuracy": 0.6441834028040925,
|
4 |
+
"eval_f1": 0.7121017502331707,
|
5 |
+
"eval_loss": 2.1857309341430664,
|
6 |
+
"eval_precision": 0.8368800792283315,
|
7 |
+
"eval_runtime": 108.4652,
|
8 |
+
"eval_samples_per_second": 24.33,
|
9 |
+
"eval_steps_per_second": 0.811
|
10 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 32.0,
|
3 |
+
"train_loss": 1.4852149317962955,
|
4 |
+
"train_runtime": 31381.271,
|
5 |
+
"train_samples_per_second": 24.216,
|
6 |
+
"train_steps_per_second": 0.202
|
7 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.6441834028040925,
|
3 |
+
"best_model_checkpoint": "hubert-base-ls960/checkpoint-6000",
|
4 |
+
"epoch": 32.0,
|
5 |
+
"global_step": 6336,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 2.53,
|
12 |
+
"learning_rate": 2.3659305993690853e-05,
|
13 |
+
"loss": 4.523,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 2.53,
|
18 |
+
"eval_accuracy": 0.02046229632436529,
|
19 |
+
"eval_f1": 0.003726162630911285,
|
20 |
+
"eval_loss": 5.154743194580078,
|
21 |
+
"eval_precision": 0.0047326994458260765,
|
22 |
+
"eval_runtime": 111.372,
|
23 |
+
"eval_samples_per_second": 23.695,
|
24 |
+
"eval_steps_per_second": 0.79,
|
25 |
+
"step": 500
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 5.05,
|
29 |
+
"learning_rate": 2.8074359873728517e-05,
|
30 |
+
"loss": 3.4187,
|
31 |
+
"step": 1000
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 5.05,
|
35 |
+
"eval_accuracy": 0.03372489579386131,
|
36 |
+
"eval_f1": 0.01633580104617213,
|
37 |
+
"eval_loss": 4.628676891326904,
|
38 |
+
"eval_precision": 0.025641939245838297,
|
39 |
+
"eval_runtime": 106.2725,
|
40 |
+
"eval_samples_per_second": 24.832,
|
41 |
+
"eval_steps_per_second": 0.828,
|
42 |
+
"step": 1000
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 7.58,
|
46 |
+
"learning_rate": 2.5443703963521573e-05,
|
47 |
+
"loss": 2.3533,
|
48 |
+
"step": 1500
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 7.58,
|
52 |
+
"eval_accuracy": 0.09435392194012884,
|
53 |
+
"eval_f1": 0.06405678590079675,
|
54 |
+
"eval_loss": 4.254951477050781,
|
55 |
+
"eval_precision": 0.10330351479105922,
|
56 |
+
"eval_runtime": 108.1414,
|
57 |
+
"eval_samples_per_second": 24.403,
|
58 |
+
"eval_steps_per_second": 0.814,
|
59 |
+
"step": 1500
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 10.1,
|
63 |
+
"learning_rate": 2.2813048053314627e-05,
|
64 |
+
"loss": 1.7145,
|
65 |
+
"step": 2000
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 10.1,
|
69 |
+
"eval_accuracy": 0.10951117847669571,
|
70 |
+
"eval_f1": 0.09636838131822689,
|
71 |
+
"eval_loss": 3.953977108001709,
|
72 |
+
"eval_precision": 0.20908275360175174,
|
73 |
+
"eval_runtime": 101.3178,
|
74 |
+
"eval_samples_per_second": 26.047,
|
75 |
+
"eval_steps_per_second": 0.869,
|
76 |
+
"step": 2000
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 12.63,
|
80 |
+
"learning_rate": 2.0182392143107683e-05,
|
81 |
+
"loss": 1.3245,
|
82 |
+
"step": 2500
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 12.63,
|
86 |
+
"eval_accuracy": 0.17582417582417584,
|
87 |
+
"eval_f1": 0.1859427403647579,
|
88 |
+
"eval_loss": 3.855651617050171,
|
89 |
+
"eval_precision": 0.3608930277105155,
|
90 |
+
"eval_runtime": 107.9879,
|
91 |
+
"eval_samples_per_second": 24.438,
|
92 |
+
"eval_steps_per_second": 0.815,
|
93 |
+
"step": 2500
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 15.15,
|
97 |
+
"learning_rate": 1.7551736232900737e-05,
|
98 |
+
"loss": 1.0729,
|
99 |
+
"step": 3000
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 15.15,
|
103 |
+
"eval_accuracy": 0.224706328154604,
|
104 |
+
"eval_f1": 0.2537469884726095,
|
105 |
+
"eval_loss": 3.74106764793396,
|
106 |
+
"eval_precision": 0.4918090735633196,
|
107 |
+
"eval_runtime": 107.1954,
|
108 |
+
"eval_samples_per_second": 24.619,
|
109 |
+
"eval_steps_per_second": 0.821,
|
110 |
+
"step": 3000
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 17.68,
|
114 |
+
"learning_rate": 1.4921080322693792e-05,
|
115 |
+
"loss": 0.8955,
|
116 |
+
"step": 3500
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 17.68,
|
120 |
+
"eval_accuracy": 0.378931413414172,
|
121 |
+
"eval_f1": 0.42563545406792835,
|
122 |
+
"eval_loss": 3.2683181762695312,
|
123 |
+
"eval_precision": 0.6161701808557754,
|
124 |
+
"eval_runtime": 108.9972,
|
125 |
+
"eval_samples_per_second": 24.212,
|
126 |
+
"eval_steps_per_second": 0.807,
|
127 |
+
"step": 3500
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 20.2,
|
131 |
+
"learning_rate": 1.2290424412486847e-05,
|
132 |
+
"loss": 0.7697,
|
133 |
+
"step": 4000
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 20.2,
|
137 |
+
"eval_accuracy": 0.46115953012504735,
|
138 |
+
"eval_f1": 0.5171156262633545,
|
139 |
+
"eval_loss": 2.874896764755249,
|
140 |
+
"eval_precision": 0.7105984753027313,
|
141 |
+
"eval_runtime": 104.5833,
|
142 |
+
"eval_samples_per_second": 25.233,
|
143 |
+
"eval_steps_per_second": 0.841,
|
144 |
+
"step": 4000
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 22.73,
|
148 |
+
"learning_rate": 9.659768502279902e-06,
|
149 |
+
"loss": 0.6864,
|
150 |
+
"step": 4500
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 22.73,
|
154 |
+
"eval_accuracy": 0.5168624478969307,
|
155 |
+
"eval_f1": 0.5779425289838436,
|
156 |
+
"eval_loss": 2.7250964641571045,
|
157 |
+
"eval_precision": 0.7436539303592055,
|
158 |
+
"eval_runtime": 102.232,
|
159 |
+
"eval_samples_per_second": 25.814,
|
160 |
+
"eval_steps_per_second": 0.861,
|
161 |
+
"step": 4500
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 25.25,
|
165 |
+
"learning_rate": 7.029112592072957e-06,
|
166 |
+
"loss": 0.6061,
|
167 |
+
"step": 5000
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 25.25,
|
171 |
+
"eval_accuracy": 0.5630920803334597,
|
172 |
+
"eval_f1": 0.6334793930128474,
|
173 |
+
"eval_loss": 2.506129264831543,
|
174 |
+
"eval_precision": 0.8042779660767879,
|
175 |
+
"eval_runtime": 108.8606,
|
176 |
+
"eval_samples_per_second": 24.242,
|
177 |
+
"eval_steps_per_second": 0.808,
|
178 |
+
"step": 5000
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 27.78,
|
182 |
+
"learning_rate": 4.398456681866012e-06,
|
183 |
+
"loss": 0.5777,
|
184 |
+
"step": 5500
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 27.78,
|
188 |
+
"eval_accuracy": 0.6176582038651004,
|
189 |
+
"eval_f1": 0.6836726868522811,
|
190 |
+
"eval_loss": 2.28301739692688,
|
191 |
+
"eval_precision": 0.8183499709851196,
|
192 |
+
"eval_runtime": 109.1511,
|
193 |
+
"eval_samples_per_second": 24.177,
|
194 |
+
"eval_steps_per_second": 0.806,
|
195 |
+
"step": 5500
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 30.3,
|
199 |
+
"learning_rate": 1.767800771659067e-06,
|
200 |
+
"loss": 0.5304,
|
201 |
+
"step": 6000
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 30.3,
|
205 |
+
"eval_accuracy": 0.6441834028040925,
|
206 |
+
"eval_f1": 0.7121017502331707,
|
207 |
+
"eval_loss": 2.1857309341430664,
|
208 |
+
"eval_precision": 0.8368800792283315,
|
209 |
+
"eval_runtime": 110.4001,
|
210 |
+
"eval_samples_per_second": 23.904,
|
211 |
+
"eval_steps_per_second": 0.797,
|
212 |
+
"step": 6000
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 32.0,
|
216 |
+
"step": 6336,
|
217 |
+
"total_flos": 3.804433776973221e+19,
|
218 |
+
"train_loss": 1.4852149317962955,
|
219 |
+
"train_runtime": 31381.271,
|
220 |
+
"train_samples_per_second": 24.216,
|
221 |
+
"train_steps_per_second": 0.202
|
222 |
+
}
|
223 |
+
],
|
224 |
+
"max_steps": 6336,
|
225 |
+
"num_train_epochs": 32,
|
226 |
+
"total_flos": 3.804433776973221e+19,
|
227 |
+
"trial_name": null,
|
228 |
+
"trial_params": null
|
229 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c39e7ce25cf00c9024118f641c2539b50197c6f425ee258eb1149ae68c627f12
|
3 |
+
size 3503
|