--- license: mit language: - en base_model: - microsoft/deberta-v3-large pipeline_tag: token-classification library_name: transformers tags: - LoRA - Adapter --- # Training This model adapter is designed for token classification tasks, enabling it to extract aspect terms and predict the sentiment polarity associated with the extracted aspect terms. The extracted aspect terms will be the span(s) from the input text on which a sentiment is being expressed. It has been created using [PEFT](https://huggingface.co/docs/peft/index) framework for [LoRA:Low-Rank Adaptation](https://arxiv.org/abs/2106.09685). ## Datasets This model has been trained on the following datasets: 1. Aspect Based Sentiment Analysis SemEval Shared Tasks ([2014](https://aclanthology.org/S14-2004/), [2015](https://aclanthology.org/S15-2082/), [2016](https://aclanthology.org/S16-1002/)) 2. Multi-Aspect Multi-Sentiment [MAMS](https://aclanthology.org/D19-1654/) # Use * Loading the base model and merging it with LoRA parameters ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from peft import PeftModel # preparing the labels labels = {"B-neu": 1, "I-neu": 2, "O": 0, "B-neg": 3, "B-con": 4, "I-pos": 5, "B-pos": 6, "I-con": 7, "I-neg": 8, "X": -100} id2labels = {k:lab for lab, k in labels.items()} labels2ids = {k:lab for lab, k in id2labels.items()} # loading tokenizer and base_model base_id = 'microsoft/deberta-v3-large' tokenizer = AutoTokenizer.from_pretrained(base_id) base_model = AutoModelForTokenClassification.from_pretrained(base_id, num_labels=len(labels), id2label=id2labels, label2id=labels2ids) # using this adapter with base model model = PeftModel.from_pretrained(base_model, 'gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter', is_trainable=False) ``` This model can be utilized in the following two methods: 1. Using pipelines for end to end inference 2. Making token level inference # Using end-to-end token classification pipeline ```python from transformers import pipeline ate_sent_pipeline = pipeline(task='ner', aggregation_strategy='simple', model=model, tokenizer=tokenizer) text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded." ate_sent_pipeline(text_input) ``` Expected output ```bash [{'entity_group': 'pos', 'score': 0.89315575, 'word': 'food', 'start': 25, 'end': 30}, {'entity_group': 'neg', 'score': 0.9100719, 'word': 'service', 'start': 55, 'end': 63}] ``` # OR # Making token level inference ```python # making one prediction at a time (should be padded/batched and truncated for efficiency) text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded." tok_inputs = tokenizer(text_input, return_tensors="pt") y_pred = model(**tok_inputs) # predicting the logits # since first and the last tokens are excluded ([CLS] and [SEP]) they have to be removed before decoding y_pred_fin = y_pred.logits.argmax(dim=-1)[0][1:-1] # selecting the most favoured labels for each token from the logits decoded_pred = [id2lab[logx.item()] for logx in y_pred_fin] ## displaying the input tokens with predictions and skipping [CLS] and [SEP] tokens at the beginning and the end respectively decoded_toks = tok_inputs['input_ids'][0][1:-1] tok_levl_pred = list(zip(tokenizer.convert_ids_to_tokens(decoded_toks), decoded_pred)) ``` Expected Results ```bash [('▁Been', 'O'), ('▁here', 'O'), ('▁a', 'O'), ('▁few', 'O'), ('▁times', 'O'), ('▁and', 'O'), ('▁food', 'B-pos'), ('▁has', 'O'), ('▁always', 'O'), ('▁been', 'O'), ('▁good', 'O'), ('▁but', 'O'), ('▁service', 'B-neg'), ('▁really', 'O'), ('▁suffers', 'O'), ('▁when', 'O'), ('▁it', 'O'), ('▁gets', 'O'), ('▁crowded', 'O'), ('.', 'O')] ``` # Evaluation on Benchmark Test Datasets The first evaluation is for token-extraction task without considering the polarity of the extracted tokens. The tokens expected to be extracted are aspect term tokens on which the sentiments have been expressed. (scores are expressed as micro-averages of B-I-O labels) # ATE (Aspect Term Extraction Only) | Test Dataset | Base Model | Fine-tuned Model | Precision | Recall | F1 Score | | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |hotel reviews (SemEval 2015)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|71.16|73.92|71.6| |hotel reviews (SemEval 2015)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|70.92|72.28|71.07| |hotel reviews (SemEval 2015)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|64.05|79.69|70.0| |hotel reviews (SemEval 2015)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|66.29|72.78|68.92| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |laptop reviews (SemEval 2014)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|70.58|61.52|64.21| |laptop reviews (SemEval 2014)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|66.38|50.62|54.31| |laptop reviews (SemEval 2014)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|70.82|48.97|52.08| |laptop reviews (SemEval 2014)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|73.61|46.38|49.87| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |MAMS-ATE (2019)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|81.07|79.66|80.35| |MAMS-ATE (2019)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|79.91|78.95|79.39| |MAMS-ATE (2019)|microsoft/deberta-v3-large|(this)[gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|74.46|84.5|78.75| |MAMS-ATE (2019)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|77.8|79.81|78.75| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |restaurant reviews (SemEval 2014)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|88.59|87.0|87.45| |restaurant reviews (SemEval 2014)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|92.26|82.95|86.57| |restaurant reviews (SemEval 2014)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|93.07|81.95|86.32| |restaurant reviews (SemEval 2014)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|92.94|81.71|86.01| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |restaurant reviews (SemEval 2015)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|72.91|75.4|72.74| |restaurant reviews (SemEval 2015)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|70.54|77.48|72.63| |restaurant reviews (SemEval 2015)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|68.32|79.84|72.28| |restaurant reviews (SemEval 2015)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|71.94|74.75|71.84| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |restaurant reviews (SemEval 2016)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|70.22|75.83|71.84| |restaurant reviews (SemEval 2016)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|71.54|73.38|71.2| |restaurant reviews (SemEval 2016)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|71.35|72.78|70.85| |restaurant reviews (SemEval 2016)|microsoft/deberta-v3-large|(this)[gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|66.68|77.97|70.79| # Aspect Sentiment Evaluation This evaluation considers token-extraction task with polarity of the extracted tokens. The tokens expected to be extracted are aspect term tokens on which the sentiments have been expressed along with the polarity of the sentiments. (scores are expressed as macro-averages) | Test Dataset | Base Model | Fine-tuned Model | Precision | Recall | F1 Score | | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |hotel reviews (SemEval 2015)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|51.92|65.55|54.94| |hotel reviews (SemEval 2015)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|54.62|53.65|54.08| |hotel reviews (SemEval 2015)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|55.43|56.53|54.03| |hotel reviews (SemEval 2015)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|52.88|55.19|53.85| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |laptop reviews (SemEval 2014)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|44.25|41.55|42.81| |laptop reviews (SemEval 2014)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|46.15|33.23|37.09| |laptop reviews (SemEval 2014)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|41.7|34.38|36.93| |laptop reviews (SemEval 2014)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|44.98|31.87|35.67| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |MAMS-ATE (2019)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|72.06|72.98|72.49| |MAMS-ATE (2019)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|72.97|71.63|72.26| |MAMS-ATE (2019)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|69.34|73.3|71.07| |MAMS-ATE (2019)|microsoft/deberta-v3-large|(this)[gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|65.74|75.11|69.77| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |restaurant reviews (SemEval 2014)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|61.15|58.46|59.74| |restaurant reviews (SemEval 2014)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|60.13|56.81|58.13| |restaurant reviews (SemEval 2014)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|56.79|59.3|57.93| |restaurant reviews (SemEval 2014)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|58.99|54.76|56.45| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |restaurant reviews (SemEval 2015)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|53.89|55.7|54.11| |restaurant reviews (SemEval 2015)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|54.36|55.38|53.6| |restaurant reviews (SemEval 2015)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|51.67|56.58|53.29| |restaurant reviews (SemEval 2015)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|54.55|53.68|53.12| | ------------ | ---------- | ---------------- | --------- | ------ | -------- | |restaurant reviews (SemEval 2016)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|53.7|60.49|55.05| |restaurant reviews (SemEval 2016)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|52.31|54.58|52.33| |restaurant reviews (SemEval 2016)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|52.07|54.58|52.15| |restaurant reviews (SemEval 2016)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|49.07|56.5|51.25|