--- license: mit tags: - generated_from_trainer model-index: - name: ec-biogpt-masked-pubmed results: [] --- # ec-biogpt-masked-pubmed This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3707 | 0.07 | 500 | 0.8468 | | 0.5388 | 0.14 | 1000 | 0.7643 | | 0.5857 | 0.21 | 1500 | 0.7669 | | 0.5441 | 0.28 | 2000 | 0.7576 | | 0.5294 | 0.36 | 2500 | 0.7570 | | 0.7544 | 0.43 | 3000 | 0.7227 | | 0.7075 | 0.5 | 3500 | 0.7153 | | 0.7513 | 0.57 | 4000 | 0.7105 | | 0.7101 | 0.64 | 4500 | 0.7059 | | 0.7369 | 0.71 | 5000 | 0.7031 | | 0.7477 | 0.78 | 5500 | 0.6991 | | 0.6831 | 0.85 | 6000 | 0.6978 | | 0.6458 | 0.93 | 6500 | 0.6940 | | 0.6998 | 1.0 | 7000 | 0.6907 | | 0.5901 | 1.07 | 7500 | 0.7036 | | 0.633 | 1.14 | 8000 | 0.7016 | | 0.6375 | 1.21 | 8500 | 0.7020 | | 0.6378 | 1.28 | 9000 | 0.6988 | | 0.5952 | 1.35 | 9500 | 0.6965 | | 0.5714 | 1.42 | 10000 | 0.6960 | | 0.5874 | 1.5 | 10500 | 0.6957 | | 0.5828 | 1.57 | 11000 | 0.6917 | | 0.5921 | 1.64 | 11500 | 0.6920 | | 0.6086 | 1.71 | 12000 | 0.6905 | | 0.5872 | 1.78 | 12500 | 0.6878 | | 0.5895 | 1.85 | 13000 | 0.6883 | | 0.5953 | 1.92 | 13500 | 0.6860 | | 0.598 | 1.99 | 14000 | 0.6852 | | 0.4805 | 2.07 | 14500 | 0.7077 | | 0.4885 | 2.14 | 15000 | 0.7107 | | 0.5048 | 2.21 | 15500 | 0.7083 | | 0.4665 | 2.28 | 16000 | 0.7098 | | 0.5057 | 2.35 | 16500 | 0.7088 | | 0.4706 | 2.42 | 17000 | 0.7081 | | 0.5056 | 2.49 | 17500 | 0.7076 | | 0.4884 | 2.56 | 18000 | 0.7068 | | 0.487 | 2.64 | 18500 | 0.7051 | | 0.5327 | 2.71 | 19000 | 0.7062 | | 0.4902 | 2.78 | 19500 | 0.7042 | | 0.5277 | 2.85 | 20000 | 0.7021 | | 0.499 | 2.92 | 20500 | 0.7024 | | 0.4981 | 2.99 | 21000 | 0.7002 | | 0.4174 | 3.06 | 21500 | 0.7237 | | 0.4233 | 3.13 | 22000 | 0.7244 | | 0.4331 | 3.21 | 22500 | 0.7265 | | 0.4203 | 3.28 | 23000 | 0.7275 | | 0.4265 | 3.35 | 23500 | 0.7252 | | 0.4302 | 3.42 | 24000 | 0.7271 | | 0.4343 | 3.49 | 24500 | 0.7244 | | 0.4264 | 3.56 | 25000 | 0.7265 | | 0.4565 | 3.63 | 25500 | 0.7247 | | 0.4258 | 3.7 | 26000 | 0.7245 | | 0.4191 | 3.78 | 26500 | 0.7246 | | 0.4412 | 3.85 | 27000 | 0.7234 | | 0.4604 | 3.92 | 27500 | 0.7249 | | 0.4197 | 3.99 | 28000 | 0.7238 | | 0.3666 | 4.06 | 28500 | 0.7413 | | 0.3772 | 4.13 | 29000 | 0.7414 | | 0.3628 | 4.2 | 29500 | 0.7410 | | 0.3611 | 4.27 | 30000 | 0.7431 | | 0.3736 | 4.35 | 30500 | 0.7414 | | 0.3741 | 4.42 | 31000 | 0.7420 | | 0.3661 | 4.49 | 31500 | 0.7424 | | 0.3966 | 4.56 | 32000 | 0.7423 | | 0.4058 | 4.63 | 32500 | 0.7423 | | 0.4028 | 4.7 | 33000 | 0.7423 | | 0.4028 | 4.77 | 33500 | 0.7420 | | 0.3802 | 4.84 | 34000 | 0.7421 | | 0.3612 | 4.92 | 34500 | 0.7418 | | 0.3804 | 4.99 | 35000 | 0.7418 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2