File size: 2,843 Bytes
bdbde96
 
 
 
 
 
8e88836
bdbde96
 
 
 
284fe78
bdbde96
 
 
 
 
284fe78
bdbde96
 
 
 
 
284fe78
bdbde96
284fe78
bdbde96
 
 
 
 
 
 
 
 
 
 
 
 
 
f1ebdea
 
bdbde96
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a66e9
 
 
 
 
8e88836
c8a66e9
bdbde96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
- fnet-bert-base-comparison
datasets:
- glue
metrics:
- spearmanr
base_model: google/fnet-base
model-index:
- name: fnet-base-finetuned-stsb
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE STSB
      type: glue
      args: stsb
    metrics:
    - type: spearmanr
      value: 0.8219397497728022
      name: Spearmanr
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fnet-base-finetuned-stsb

This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7894
- Pearson: 0.8256
- Spearmanr: 0.8219
- Combined Score: 0.8238

The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased).

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used:

```bash
#!/usr/bin/bash

python ../run_glue.py \\n  --model_name_or_path google/fnet-base \\n  --task_name stsb \\n  --do_train \\n  --do_eval \\n  --max_seq_length 512 \\n  --per_device_train_batch_size 16 \\n  --learning_rate 2e-5 \\n  --num_train_epochs 3 \\n  --output_dir fnet-base-finetuned-stsb \\n  --push_to_hub \\n  --hub_strategy all_checkpoints \\n  --logging_strategy epoch \\n  --save_strategy epoch \\n  --evaluation_strategy epoch \\n```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:|
| 1.5473        | 1.0   | 360  | 0.8120         | 0.7751          | 0.8115  | 0.8125    |
| 0.6954        | 2.0   | 720  | 0.8145         | 0.8717          | 0.8160  | 0.8130    |
| 0.4828        | 3.0   | 1080 | 0.8238         | 0.7894          | 0.8256  | 0.8219    |


### Framework versions

- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3