--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xmlr-roberta-base-finetuned-panx-ko results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.ko split: validation args: PAN-X.ko metrics: - name: F1 type: f1 value: 1.0 --- # xmlr-roberta-base-finetuned-panx-ko This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3731 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 1.0 | 834 | 0.5089 | 1.0 | | No log | 2.0 | 1668 | 0.4405 | 1.0 | | No log | 3.0 | 2502 | 0.3731 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3