Upload PPO LunarLander-v2 trained agent v1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 278.85 +/- 22.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa42f95fe50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa42f95fee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa42f95ff70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa42f963040>", "_build": "<function ActorCriticPolicy._build at 0x7fa42f9630d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa42f963160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa42f9631f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa42f963280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa42f963310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa42f9633a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa42f963430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa42f95ca20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671283377265218553, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACPKeL5zcAQ/Vj8WPizTtb4bRya+IMiDPQAAAAAAAAAA5lVwPdfRRruiQnO+9Shmvj3tErwnYSq8AACAPwAAAAAz8xM87AveuzZ/1byzDvM8LjM/vf1ZyD0AAIA/AACAP2aiRL1IYYy6ZKcxvHLugbV9aPG62kzmNAAAAAAAAAAAmtxsPRSYkLrQkIS5CUl4tLpe5Dpmx5k4AACAPwAAgD+zrye+NuCtP8KfBb/Up7G+zV2cviX8vL4AAAAAAAAAAE2vkz5kO9E+aumrvYItEL9MStU+Vo70vQAAAAAAAAAATcoyPgAD9T7j9lU9meznvnexPj7348s7AAAAAAAAAABmT1K+NawXPxYhiT4kSgq/CsJ6vWN7xT0AAAAAAAAAAJpF8rsBJZ28JH0iPqFPyTzFhba9xQLyuQAAgD8AAIA/GqYSvS8Mnz/WYAu+GY8Av3vMyr2Gmyy+AAAAAAAAAADqu6A+33AsP+GLnz6TdzO/SO7qPuoZJD0AAAAAAAAAALOBaD3hfRs+SCzxvgboX77HSiq+UkAAPQAAAAAAAAAAzcUwvo8WabxuR+Y6VM0fOWIP6j0rEx26AAAAAAAAgD8z42u84UKNvPkALL4kH329+voLPo+xSj4AAIA/AACAP/oLPj5OQMw+m754vn5x0b61n9I9nZLTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWHTrNX0lcUCUhpRSlIwBbJRL6IwBdJRHQJxtbY8Md951fZQoaAZoCWgPQwi0keumlLlxQJSGlFKUaBVL8GgWR0CcboeVcD8tdX2UKGgGaAloD0MILbDHRMrhckCUhpRSlGgVS89oFkdAnG6WViWmg3V9lChoBmgJaA9DCA+5GW5AeG9AlIaUUpRoFUvHaBZHQJxun5Jsfq51fZQoaAZoCWgPQwhOtKuQMp9yQJSGlFKUaBVNKAFoFkdAnG8N8Aq/d3V9lChoBmgJaA9DCKq53GCoQHJAlIaUUpRoFUvjaBZHQJxvC4b0e2d1fZQoaAZoCWgPQwhXWkbqvZhwQJSGlFKUaBVL1GgWR0Ccbxc5Ke05dX2UKGgGaAloD0MISZ2AJsK1cUCUhpRSlGgVS9RoFkdAnG9fGVAzHnV9lChoBmgJaA9DCPYlGw+2tXBAlIaUUpRoFUvEaBZHQJxvaK1og3d1fZQoaAZoCWgPQwgGgZVDy2pyQJSGlFKUaBVL1GgWR0Ccb3UZvUBodX2UKGgGaAloD0MIdc3kmy0jc0CUhpRSlGgVS8xoFkdAnG+XIdU83nV9lChoBmgJaA9DCDmaIyu/InNAlIaUUpRoFUvkaBZHQJxxMenyd4F1fZQoaAZoCWgPQwhyMQbWscVyQJSGlFKUaBVLz2gWR0CccYyVfNRndX2UKGgGaAloD0MIVcA9z18Cc0CUhpRSlGgVTQkBaBZHQJxxuYoiLVF1fZQoaAZoCWgPQwjkLsIUpVdwQJSGlFKUaBVL1WgWR0Cccd/zJ6ppdX2UKGgGaAloD0MIkJ4ih8jYckCUhpRSlGgVS9ZoFkdAnHH4UrTYunV9lChoBmgJaA9DCHXpX5IKTHFAlIaUUpRoFUvnaBZHQJxyGOCGvfV1fZQoaAZoCWgPQwgnTYOi+UBuQJSGlFKUaBVL0GgWR0CccvHD7655dX2UKGgGaAloD0MIs5jYfBwXckCUhpRSlGgVS9RoFkdAnHL/Xbuc+nV9lChoBmgJaA9DCBps6jwq0XBAlIaUUpRoFUvNaBZHQJxzTO/tY0V1fZQoaAZoCWgPQwj8pxsoMIVwQJSGlFKUaBVL3WgWR0Ccc6GiHqNZdX2UKGgGaAloD0MIIF1sWqmVcECUhpRSlGgVS/5oFkdAnHPa2OQyRHV9lChoBmgJaA9DCGq/tRPlUnFAlIaUUpRoFUvVaBZHQJxz2z3RG+d1fZQoaAZoCWgPQwjpLLMIRURyQJSGlFKUaBVL62gWR0Ccc/2g3974dX2UKGgGaAloD0MIuiwmNp9ec0CUhpRSlGgVS9xoFkdAnHQMgyM1j3V9lChoBmgJaA9DCHKG4o63rXJAlIaUUpRoFUvraBZHQJx0SN6w+t91fZQoaAZoCWgPQwgGS3UBL8JwQJSGlFKUaBVL9GgWR0CcdLLcsUZfdX2UKGgGaAloD0MIwtzu5f42cECUhpRSlGgVS9BoFkdAnHXtu+AVf3V9lChoBmgJaA9DCAFPWrgsvnBAlIaUUpRoFUvlaBZHQJx2EQBgeBB1fZQoaAZoCWgPQwii725lCWl0QJSGlFKUaBVL2GgWR0CcdkpkPMB7dX2UKGgGaAloD0MIBfhu88bockCUhpRSlGgVS+FoFkdAnHakaqCHynV9lChoBmgJaA9DCEEo7+Ooh3FAlIaUUpRoFUveaBZHQJx20auOjqR1fZQoaAZoCWgPQwgEAp1Jm5txQJSGlFKUaBVL5mgWR0Ccdtvegte2dX2UKGgGaAloD0MIK21xjY8gc0CUhpRSlGgVS8ZoFkdAnHc6Skj5bnV9lChoBmgJaA9DCNfZkH9mz3BAlIaUUpRoFUvIaBZHQJx3OOIZZSx1fZQoaAZoCWgPQwjPhvwzg3RyQJSGlFKUaBVL12gWR0CclCAAAAAAdX2UKGgGaAloD0MI56c4DjyAckCUhpRSlGgVS8xoFkdAnJQ7eZXuE3V9lChoBmgJaA9DCKSJd4Dnf3NAlIaUUpRoFUvRaBZHQJyUkjfNzKd1fZQoaAZoCWgPQwiNf59xIexwQJSGlFKUaBVL0WgWR0CclLiR4hUzdX2UKGgGaAloD0MI0v2cgvxkc0CUhpRSlGgVS85oFkdAnJS42OyVwHV9lChoBmgJaA9DCAK7mjwl1HFAlIaUUpRoFUvaaBZHQJyUzZcs1891fZQoaAZoCWgPQwhsPq4N1cJzQJSGlFKUaBVLx2gWR0CclNM72cridX2UKGgGaAloD0MIBCFZwAQWcUCUhpRSlGgVS8VoFkdAnJUkUbkwOHV9lChoBmgJaA9DCNJzC13JknBAlIaUUpRoFUvVaBZHQJyWncCYCyR1fZQoaAZoCWgPQwgN/+kGymFwQJSGlFKUaBVLz2gWR0Cclp5TIeYEdX2UKGgGaAloD0MI/yCSIQd/cECUhpRSlGgVS9NoFkdAnJbrA+IM0HV9lChoBmgJaA9DCMkfDDw3dnFAlIaUUpRoFUvfaBZHQJyXhNucc2l1fZQoaAZoCWgPQwhtA3egTghxQJSGlFKUaBVL12gWR0Ccl/e6qbSadX2UKGgGaAloD0MICHQmbSoecUCUhpRSlGgVS8FoFkdAnJgxg/keZHV9lChoBmgJaA9DCKxT5XvGS3FAlIaUUpRoFUvzaBZHQJyYLQF9roJ1fZQoaAZoCWgPQwjKayV0l3ZwQJSGlFKUaBVL/mgWR0CcmHhVENONdX2UKGgGaAloD0MIFXKlnkVocUCUhpRSlGgVS/doFkdAnJizMaCL/HV9lChoBmgJaA9DCOUl/5P/eXJAlIaUUpRoFUvDaBZHQJyY7ALy+Yd1fZQoaAZoCWgPQwhgBmNEoslxQJSGlFKUaBVL22gWR0CcmW1HOKO1dX2UKGgGaAloD0MIe8GnOfk4b0CUhpRSlGgVS/FoFkdAnJm8mnfl63V9lChoBmgJaA9DCD/IsmBiQnJAlIaUUpRoFU0UAWgWR0CcmjGYa5wwdX2UKGgGaAloD0MIWFaalAJ2c0CUhpRSlGgVS/RoFkdAnJp2Q4jrzHV9lChoBmgJaA9DCOgtHt6zcXFAlIaUUpRoFU0fAWgWR0CcmvFpPAO8dX2UKGgGaAloD0MIQE6YMNqAcUCUhpRSlGgVS9loFkdAnJucdDIBBHV9lChoBmgJaA9DCDl7Z7SVKHJAlIaUUpRoFUvBaBZHQJycDBk7Oml1fZQoaAZoCWgPQwhozCTqxVRzQJSGlFKUaBVL/WgWR0CcnO+6Ae7udX2UKGgGaAloD0MI8tB3t7JQckCUhpRSlGgVS+doFkdAnJ2gtJ4B3nV9lChoBmgJaA9DCJhuEoPA3nJAlIaUUpRoFUvpaBZHQJyd7QD3dsV1fZQoaAZoCWgPQwiE04IX/RlzQJSGlFKUaBVL2GgWR0CcnhejVQQ+dX2UKGgGaAloD0MIMXvZdlpgb0CUhpRSlGgVS+RoFkdAnJ4jfm9xqHV9lChoBmgJaA9DCFD7rZ1oWHFAlIaUUpRoFUv+aBZHQJyeeCVbA1x1fZQoaAZoCWgPQwgg09o0dv9yQJSGlFKUaBVL9GgWR0Ccnv8V58jSdX2UKGgGaAloD0MIh78ma9TfckCUhpRSlGgVS+NoFkdAnJ8j50r9VHV9lChoBmgJaA9DCBMNUvBUp3FAlIaUUpRoFUvOaBZHQJyfbJ8v25B1fZQoaAZoCWgPQwjX+bfL/qJxQJSGlFKUaBVL9mgWR0Ccn96Kcd5qdX2UKGgGaAloD0MI5C7CFOVxc0CUhpRSlGgVS9xoFkdAnKABVyWAw3V9lChoBmgJaA9DCNLI5xVP9HFAlIaUUpRoFUvQaBZHQJygLnMdLg51fZQoaAZoCWgPQwgWhsjpq1dyQJSGlFKUaBVLz2gWR0CcoSyvLX+VdX2UKGgGaAloD0MI8KKvIE02cUCUhpRSlGgVS/VoFkdAnKGi/j81oHV9lChoBmgJaA9DCP922a97gnBAlIaUUpRoFUvcaBZHQJyiMW2w3YN1fZQoaAZoCWgPQwilv5fCg94jQJSGlFKUaBVLmGgWR0CcopK+zt1IdX2UKGgGaAloD0MIMSdok0M1ckCUhpRSlGgVS9xoFkdAnKLGZZ0Sy3V9lChoBmgJaA9DCLEzhc5ryW9AlIaUUpRoFUvgaBZHQJyjHqQiiZh1fZQoaAZoCWgPQwiWdmout6JwQJSGlFKUaBVL3GgWR0CcoyyrPt2LdX2UKGgGaAloD0MIfgG9cKd6cECUhpRSlGgVS+doFkdAnKN4kAxSHnV9lChoBmgJaA9DCNS5opQQtnFAlIaUUpRoFUvhaBZHQJyjqN6w+t91fZQoaAZoCWgPQwg8iJ0pNJdyQJSGlFKUaBVL1WgWR0Cco+LX+VC5dX2UKGgGaAloD0MIduJyvAI0c0CUhpRSlGgVS+xoFkdAnKTjwH7gsXV9lChoBmgJaA9DCKbtX1kp+nFAlIaUUpRoFUvZaBZHQJyk6XyAhB91fZQoaAZoCWgPQwjbi2g7Zs9wQJSGlFKUaBVL12gWR0CcpQHC4z7/dX2UKGgGaAloD0MIxeV4BSJDc0CUhpRSlGgVS+BoFkdAnKVmMju8b3V9lChoBmgJaA9DCEG5bd/j6HJAlIaUUpRoFUv1aBZHQJym88JUo8Z1fZQoaAZoCWgPQwgpJQSr6mZxQJSGlFKUaBVL5GgWR0Ccpwv+OwPidX2UKGgGaAloD0MIK98zEuEjcUCUhpRSlGgVS91oFkdAnKd903fhuXV9lChoBmgJaA9DCONPVDYsym9AlIaUUpRoFUvNaBZHQJyngikfs/p1fZQoaAZoCWgPQwhFZ5lFaCFxQJSGlFKUaBVL3GgWR0CcqA3Mpw0gdX2UKGgGaAloD0MIeSReno7VcUCUhpRSlGgVS85oFkdAnKgQ482aUnV9lChoBmgJaA9DCHZTymvlL3BAlIaUUpRoFUvXaBZHQJyooqgAZKp1fZQoaAZoCWgPQwgiUz4EFeRyQJSGlFKUaBVL0WgWR0CcqOzhgmZ3dX2UKGgGaAloD0MIwCK/fkh9cECUhpRSlGgVS+poFkdAnKlVuR9w33V9lChoBmgJaA9DCKBP5EmSVXNAlIaUUpRoFU0MAWgWR0CcqarTpgTidX2UKGgGaAloD0MIqg65Ge7DcUCUhpRSlGgVS8xoFkdAnKnY+GGmDXV9lChoBmgJaA9DCLVv7q+er29AlIaUUpRoFUvYaBZHQJyqKFpPAO91fZQoaAZoCWgPQwhHBOPg0u5vQJSGlFKUaBVL3mgWR0CcqtQz1scidX2UKGgGaAloD0MI+yKhLWeyckCUhpRSlGgVS/RoFkdAnKrx0IToMnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 594, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:664ce09b6a736acfb2dce39b3112cf51d8a85127cdf6f3fdb92b75e5679ff9c1
|
3 |
+
size 147094
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa42f95fe50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa42f95fee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa42f95ff70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa42f963040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa42f9630d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa42f963160>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa42f9631f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa42f963280>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa42f963310>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa42f9633a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa42f963430>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa42f95ca20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1507328,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671283377265218553,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACPKeL5zcAQ/Vj8WPizTtb4bRya+IMiDPQAAAAAAAAAA5lVwPdfRRruiQnO+9Shmvj3tErwnYSq8AACAPwAAAAAz8xM87AveuzZ/1byzDvM8LjM/vf1ZyD0AAIA/AACAP2aiRL1IYYy6ZKcxvHLugbV9aPG62kzmNAAAAAAAAAAAmtxsPRSYkLrQkIS5CUl4tLpe5Dpmx5k4AACAPwAAgD+zrye+NuCtP8KfBb/Up7G+zV2cviX8vL4AAAAAAAAAAE2vkz5kO9E+aumrvYItEL9MStU+Vo70vQAAAAAAAAAATcoyPgAD9T7j9lU9meznvnexPj7348s7AAAAAAAAAABmT1K+NawXPxYhiT4kSgq/CsJ6vWN7xT0AAAAAAAAAAJpF8rsBJZ28JH0iPqFPyTzFhba9xQLyuQAAgD8AAIA/GqYSvS8Mnz/WYAu+GY8Av3vMyr2Gmyy+AAAAAAAAAADqu6A+33AsP+GLnz6TdzO/SO7qPuoZJD0AAAAAAAAAALOBaD3hfRs+SCzxvgboX77HSiq+UkAAPQAAAAAAAAAAzcUwvo8WabxuR+Y6VM0fOWIP6j0rEx26AAAAAAAAgD8z42u84UKNvPkALL4kH329+voLPo+xSj4AAIA/AACAP/oLPj5OQMw+m754vn5x0b61n9I9nZLTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWHTrNX0lcUCUhpRSlIwBbJRL6IwBdJRHQJxtbY8Md951fZQoaAZoCWgPQwi0keumlLlxQJSGlFKUaBVL8GgWR0CcboeVcD8tdX2UKGgGaAloD0MILbDHRMrhckCUhpRSlGgVS89oFkdAnG6WViWmg3V9lChoBmgJaA9DCA+5GW5AeG9AlIaUUpRoFUvHaBZHQJxun5Jsfq51fZQoaAZoCWgPQwhOtKuQMp9yQJSGlFKUaBVNKAFoFkdAnG8N8Aq/d3V9lChoBmgJaA9DCKq53GCoQHJAlIaUUpRoFUvjaBZHQJxvC4b0e2d1fZQoaAZoCWgPQwhXWkbqvZhwQJSGlFKUaBVL1GgWR0Ccbxc5Ke05dX2UKGgGaAloD0MISZ2AJsK1cUCUhpRSlGgVS9RoFkdAnG9fGVAzHnV9lChoBmgJaA9DCPYlGw+2tXBAlIaUUpRoFUvEaBZHQJxvaK1og3d1fZQoaAZoCWgPQwgGgZVDy2pyQJSGlFKUaBVL1GgWR0Ccb3UZvUBodX2UKGgGaAloD0MIdc3kmy0jc0CUhpRSlGgVS8xoFkdAnG+XIdU83nV9lChoBmgJaA9DCDmaIyu/InNAlIaUUpRoFUvkaBZHQJxxMenyd4F1fZQoaAZoCWgPQwhyMQbWscVyQJSGlFKUaBVLz2gWR0CccYyVfNRndX2UKGgGaAloD0MIVcA9z18Cc0CUhpRSlGgVTQkBaBZHQJxxuYoiLVF1fZQoaAZoCWgPQwjkLsIUpVdwQJSGlFKUaBVL1WgWR0Cccd/zJ6ppdX2UKGgGaAloD0MIkJ4ih8jYckCUhpRSlGgVS9ZoFkdAnHH4UrTYunV9lChoBmgJaA9DCHXpX5IKTHFAlIaUUpRoFUvnaBZHQJxyGOCGvfV1fZQoaAZoCWgPQwgnTYOi+UBuQJSGlFKUaBVL0GgWR0CccvHD7655dX2UKGgGaAloD0MIs5jYfBwXckCUhpRSlGgVS9RoFkdAnHL/Xbuc+nV9lChoBmgJaA9DCBps6jwq0XBAlIaUUpRoFUvNaBZHQJxzTO/tY0V1fZQoaAZoCWgPQwj8pxsoMIVwQJSGlFKUaBVL3WgWR0Ccc6GiHqNZdX2UKGgGaAloD0MIIF1sWqmVcECUhpRSlGgVS/5oFkdAnHPa2OQyRHV9lChoBmgJaA9DCGq/tRPlUnFAlIaUUpRoFUvVaBZHQJxz2z3RG+d1fZQoaAZoCWgPQwjpLLMIRURyQJSGlFKUaBVL62gWR0Ccc/2g3974dX2UKGgGaAloD0MIuiwmNp9ec0CUhpRSlGgVS9xoFkdAnHQMgyM1j3V9lChoBmgJaA9DCHKG4o63rXJAlIaUUpRoFUvraBZHQJx0SN6w+t91fZQoaAZoCWgPQwgGS3UBL8JwQJSGlFKUaBVL9GgWR0CcdLLcsUZfdX2UKGgGaAloD0MIwtzu5f42cECUhpRSlGgVS9BoFkdAnHXtu+AVf3V9lChoBmgJaA9DCAFPWrgsvnBAlIaUUpRoFUvlaBZHQJx2EQBgeBB1fZQoaAZoCWgPQwii725lCWl0QJSGlFKUaBVL2GgWR0CcdkpkPMB7dX2UKGgGaAloD0MIBfhu88bockCUhpRSlGgVS+FoFkdAnHakaqCHynV9lChoBmgJaA9DCEEo7+Ooh3FAlIaUUpRoFUveaBZHQJx20auOjqR1fZQoaAZoCWgPQwgEAp1Jm5txQJSGlFKUaBVL5mgWR0Ccdtvegte2dX2UKGgGaAloD0MIK21xjY8gc0CUhpRSlGgVS8ZoFkdAnHc6Skj5bnV9lChoBmgJaA9DCNfZkH9mz3BAlIaUUpRoFUvIaBZHQJx3OOIZZSx1fZQoaAZoCWgPQwjPhvwzg3RyQJSGlFKUaBVL12gWR0CclCAAAAAAdX2UKGgGaAloD0MI56c4DjyAckCUhpRSlGgVS8xoFkdAnJQ7eZXuE3V9lChoBmgJaA9DCKSJd4Dnf3NAlIaUUpRoFUvRaBZHQJyUkjfNzKd1fZQoaAZoCWgPQwiNf59xIexwQJSGlFKUaBVL0WgWR0CclLiR4hUzdX2UKGgGaAloD0MI0v2cgvxkc0CUhpRSlGgVS85oFkdAnJS42OyVwHV9lChoBmgJaA9DCAK7mjwl1HFAlIaUUpRoFUvaaBZHQJyUzZcs1891fZQoaAZoCWgPQwhsPq4N1cJzQJSGlFKUaBVLx2gWR0CclNM72cridX2UKGgGaAloD0MIBCFZwAQWcUCUhpRSlGgVS8VoFkdAnJUkUbkwOHV9lChoBmgJaA9DCNJzC13JknBAlIaUUpRoFUvVaBZHQJyWncCYCyR1fZQoaAZoCWgPQwgN/+kGymFwQJSGlFKUaBVLz2gWR0Cclp5TIeYEdX2UKGgGaAloD0MI/yCSIQd/cECUhpRSlGgVS9NoFkdAnJbrA+IM0HV9lChoBmgJaA9DCMkfDDw3dnFAlIaUUpRoFUvfaBZHQJyXhNucc2l1fZQoaAZoCWgPQwhtA3egTghxQJSGlFKUaBVL12gWR0Ccl/e6qbSadX2UKGgGaAloD0MICHQmbSoecUCUhpRSlGgVS8FoFkdAnJgxg/keZHV9lChoBmgJaA9DCKxT5XvGS3FAlIaUUpRoFUvzaBZHQJyYLQF9roJ1fZQoaAZoCWgPQwjKayV0l3ZwQJSGlFKUaBVL/mgWR0CcmHhVENONdX2UKGgGaAloD0MIFXKlnkVocUCUhpRSlGgVS/doFkdAnJizMaCL/HV9lChoBmgJaA9DCOUl/5P/eXJAlIaUUpRoFUvDaBZHQJyY7ALy+Yd1fZQoaAZoCWgPQwhgBmNEoslxQJSGlFKUaBVL22gWR0CcmW1HOKO1dX2UKGgGaAloD0MIe8GnOfk4b0CUhpRSlGgVS/FoFkdAnJm8mnfl63V9lChoBmgJaA9DCD/IsmBiQnJAlIaUUpRoFU0UAWgWR0CcmjGYa5wwdX2UKGgGaAloD0MIWFaalAJ2c0CUhpRSlGgVS/RoFkdAnJp2Q4jrzHV9lChoBmgJaA9DCOgtHt6zcXFAlIaUUpRoFU0fAWgWR0CcmvFpPAO8dX2UKGgGaAloD0MIQE6YMNqAcUCUhpRSlGgVS9loFkdAnJucdDIBBHV9lChoBmgJaA9DCDl7Z7SVKHJAlIaUUpRoFUvBaBZHQJycDBk7Oml1fZQoaAZoCWgPQwhozCTqxVRzQJSGlFKUaBVL/WgWR0CcnO+6Ae7udX2UKGgGaAloD0MI8tB3t7JQckCUhpRSlGgVS+doFkdAnJ2gtJ4B3nV9lChoBmgJaA9DCJhuEoPA3nJAlIaUUpRoFUvpaBZHQJyd7QD3dsV1fZQoaAZoCWgPQwiE04IX/RlzQJSGlFKUaBVL2GgWR0CcnhejVQQ+dX2UKGgGaAloD0MIMXvZdlpgb0CUhpRSlGgVS+RoFkdAnJ4jfm9xqHV9lChoBmgJaA9DCFD7rZ1oWHFAlIaUUpRoFUv+aBZHQJyeeCVbA1x1fZQoaAZoCWgPQwgg09o0dv9yQJSGlFKUaBVL9GgWR0Ccnv8V58jSdX2UKGgGaAloD0MIh78ma9TfckCUhpRSlGgVS+NoFkdAnJ8j50r9VHV9lChoBmgJaA9DCBMNUvBUp3FAlIaUUpRoFUvOaBZHQJyfbJ8v25B1fZQoaAZoCWgPQwjX+bfL/qJxQJSGlFKUaBVL9mgWR0Ccn96Kcd5qdX2UKGgGaAloD0MI5C7CFOVxc0CUhpRSlGgVS9xoFkdAnKABVyWAw3V9lChoBmgJaA9DCNLI5xVP9HFAlIaUUpRoFUvQaBZHQJygLnMdLg51fZQoaAZoCWgPQwgWhsjpq1dyQJSGlFKUaBVLz2gWR0CcoSyvLX+VdX2UKGgGaAloD0MI8KKvIE02cUCUhpRSlGgVS/VoFkdAnKGi/j81oHV9lChoBmgJaA9DCP922a97gnBAlIaUUpRoFUvcaBZHQJyiMW2w3YN1fZQoaAZoCWgPQwilv5fCg94jQJSGlFKUaBVLmGgWR0CcopK+zt1IdX2UKGgGaAloD0MIMSdok0M1ckCUhpRSlGgVS9xoFkdAnKLGZZ0Sy3V9lChoBmgJaA9DCLEzhc5ryW9AlIaUUpRoFUvgaBZHQJyjHqQiiZh1fZQoaAZoCWgPQwiWdmout6JwQJSGlFKUaBVL3GgWR0CcoyyrPt2LdX2UKGgGaAloD0MIfgG9cKd6cECUhpRSlGgVS+doFkdAnKN4kAxSHnV9lChoBmgJaA9DCNS5opQQtnFAlIaUUpRoFUvhaBZHQJyjqN6w+t91fZQoaAZoCWgPQwg8iJ0pNJdyQJSGlFKUaBVL1WgWR0Cco+LX+VC5dX2UKGgGaAloD0MIduJyvAI0c0CUhpRSlGgVS+xoFkdAnKTjwH7gsXV9lChoBmgJaA9DCKbtX1kp+nFAlIaUUpRoFUvZaBZHQJyk6XyAhB91fZQoaAZoCWgPQwjbi2g7Zs9wQJSGlFKUaBVL12gWR0CcpQHC4z7/dX2UKGgGaAloD0MIxeV4BSJDc0CUhpRSlGgVS+BoFkdAnKVmMju8b3V9lChoBmgJaA9DCEG5bd/j6HJAlIaUUpRoFUv1aBZHQJym88JUo8Z1fZQoaAZoCWgPQwgpJQSr6mZxQJSGlFKUaBVL5GgWR0Ccpwv+OwPidX2UKGgGaAloD0MIK98zEuEjcUCUhpRSlGgVS91oFkdAnKd903fhuXV9lChoBmgJaA9DCONPVDYsym9AlIaUUpRoFUvNaBZHQJyngikfs/p1fZQoaAZoCWgPQwhFZ5lFaCFxQJSGlFKUaBVL3GgWR0CcqA3Mpw0gdX2UKGgGaAloD0MIeSReno7VcUCUhpRSlGgVS85oFkdAnKgQ482aUnV9lChoBmgJaA9DCHZTymvlL3BAlIaUUpRoFUvXaBZHQJyooqgAZKp1fZQoaAZoCWgPQwgiUz4EFeRyQJSGlFKUaBVL0WgWR0CcqOzhgmZ3dX2UKGgGaAloD0MIwCK/fkh9cECUhpRSlGgVS+poFkdAnKlVuR9w33V9lChoBmgJaA9DCKBP5EmSVXNAlIaUUpRoFU0MAWgWR0CcqarTpgTidX2UKGgGaAloD0MIqg65Ge7DcUCUhpRSlGgVS8xoFkdAnKnY+GGmDXV9lChoBmgJaA9DCLVv7q+er29AlIaUUpRoFUvYaBZHQJyqKFpPAO91fZQoaAZoCWgPQwhHBOPg0u5vQJSGlFKUaBVL3mgWR0CcqtQz1scidX2UKGgGaAloD0MI+yKhLWeyckCUhpRSlGgVS/RoFkdAnKrx0IToMnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 594,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 6,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c29e9ca2d8469002af9c506b6e9aa1e52bd8497017784bfdec3be75099cdf80d
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5d05aa1a55828ddc9457332d73ef113293584a3443a1618cd1b8dd8da1a316e
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (206 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 278.84697818793666, "std_reward": 22.00095598839026, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-17T13:51:35.785219"}
|