goldfish-models commited on
Commit
a0c5a3d
1 Parent(s): 20682a1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - orm
6
+ datasets:
7
+ - cis-lmu/Glot500
8
+ - castorini/afriberta-corpus
9
+ - statmt/cc100
10
+ - legacy-datasets/wikipedia
11
+ - csebuetnlp/xlsum
12
+ - allenai/nllb
13
+ - allenai/MADLAD-400
14
+ library_name: transformers
15
+ pipeline_tag: text-generation
16
+ tags:
17
+ - goldfish
18
+
19
+ ---
20
+
21
+ # orm_latn_5mb
22
+
23
+ Goldfish is a suite of monolingual language models trained for 350 languages.
24
+ This model is the <b>Oromo</b> (Latin script) model trained on 5MB of data, after accounting for an estimated byte premium of 1.26; content-matched text in Oromo takes on average 1.26x as many UTF-8 bytes to encode as English.
25
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
26
+
27
+ Note: orm_latn is a [macrolanguage](https://iso639-3.sil.org/code_tables/639/data) code. Individual language code gaz_latn (West Central Oromo) is included in Goldfish, although with less data.
28
+
29
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
30
+
31
+ Training code and sample usage: https://github.com/tylerachang/goldfish
32
+
33
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
34
+
35
+ ## Model details:
36
+
37
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
38
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
39
+ Details for this model specifically:
40
+
41
+ * Architecture: gpt2
42
+ * Parameters: 39087104
43
+ * Maximum sequence length: 512 tokens
44
+ * Training text data (raw): 6.32MB
45
+ * Training text data (byte premium scaled): 5.005MB
46
+ * Training tokens: 1502208 (x10 epochs)
47
+ * Vocabulary size: 50000
48
+ * Compute cost: 1135923733463040.0 FLOPs or ~0.1 NVIDIA A6000 GPU hours
49
+
50
+ Training datasets (percentages prior to deduplication):
51
+ * 32.67081%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus), [AfroMAFT](https://zenodo.org/record/6990611#.Y0-yU-xBw-Q), [CC100](https://huggingface.co/datasets/statmt/cc100), [CCNet](https://github.com/facebookresearch/cc_net), [HornMT](https://github.com/asmelashteka/HornMT), [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download), [MoT](https://github.com/bltlab/mot), [Parallel Corpora for Ethiopian Languages](https://github.com/AAUThematic4LT/Parallel-Corpora-for-Ethiopian-Languages), [TICO](https://tico-19.github.io/), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia), [XLSum](https://huggingface.co/datasets/csebuetnlp/xlsum)
52
+ * 27.67571%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
53
+ * 23.09955%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
54
+ * 14.69511%: [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus)
55
+ * 1.12785%: [eBible](https://ebible.org/find/)
56
+ * 0.73097%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
57
+
58
+
59
+ ## Citation
60
+
61
+ If you use this model, please cite:
62
+
63
+ ```
64
+ @article{chang-etal-2024-goldfish,
65
+ title={Goldfish: Monolingual Language Models for 350 Languages},
66
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
67
+ journal={Preprint},
68
+ year={2024},
69
+ }
70
+ ```