goldfish-models commited on
Commit
306cbb0
1 Parent(s): 5d09d3f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - zul
6
+ datasets:
7
+ - cis-lmu/Glot500
8
+ - allenai/c4
9
+ - legacy-datasets/wikipedia
10
+ - allenai/nllb
11
+ - allenai/MADLAD-400
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - goldfish
16
+
17
+ ---
18
+
19
+ # zul_latn_full
20
+
21
+ Goldfish is a suite of monolingual language models trained for 350 languages.
22
+ This model is the <b>Zulu</b> (Latin script) model trained on 764MB of data (all our data in the language), after accounting for an estimated byte premium of 1.16; content-matched text in Zulu takes on average 1.16x as many UTF-8 bytes to encode as English.
23
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
24
+
25
+ Note: zul_latn is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script latn).
26
+
27
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
28
+
29
+ Training code and sample usage: https://github.com/tylerachang/goldfish
30
+
31
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
32
+
33
+ ## Model details:
34
+
35
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
36
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
37
+ Details for this model specifically:
38
+
39
+ * Architecture: gpt2
40
+ * Parameters: 124770816
41
+ * Maximum sequence length: 512 tokens
42
+ * Training text data (raw): 889.34MB
43
+ * Training text data (byte premium scaled): 764.145MB
44
+ * Training tokens: 199965696 (x10 epochs)
45
+ * Vocabulary size: 50000
46
+ * Compute cost: 1.0204890955776e+18 FLOPs or ~96.5 NVIDIA A6000 GPU hours
47
+
48
+ Training datasets (percentages prior to deduplication):
49
+ * 46.89015%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [AfroMAFT](https://zenodo.org/record/6990611#.Y0-yU-xBw-Q), [CORP.NCHLT](https://repo.sadilar.org/handle/20.500.12185/7), [isiZulu](https://zenodo.org/record/5035171#.YaippvHMJDZ), [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download), [Mburisano_Covid](https://repo.sadilar.org/handle/20.500.12185/536), [MC4](https://huggingface.co/datasets/allenai/c4), [TeDDi](https://github.com/MorphDiv/TeDDi_sample), [TICO](https://tico-19.github.io/), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia)
50
+ * 34.71066%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
51
+ * 17.29050%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
52
+ * 0.78489%: [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download)
53
+ * 0.32380%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
54
+
55
+
56
+ ## Citation
57
+
58
+ If you use this model, please cite:
59
+
60
+ ```
61
+ @article{chang-etal-2024-goldfish,
62
+ title={Goldfish: Monolingual Language Models for 350 Languages},
63
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
64
+ journal={Preprint},
65
+ year={2024},
66
+ }
67
+ ```