--- library_name: transformers language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3623 - Wer: 21.2197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5651 | 0.75 | 15 | 0.4091 | 25.8916 | | 0.2755 | 1.5 | 30 | 0.3437 | 23.1455 | | 0.1284 | 2.25 | 45 | 0.3333 | 19.0086 | | 0.0768 | 3.0 | 60 | 0.3305 | 27.7461 | | 0.0365 | 3.75 | 75 | 0.3449 | 24.8752 | | 0.0224 | 4.5 | 90 | 0.3623 | 21.2197 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1