File size: 2,743 Bytes
6f3618c
 
b45dd45
 
 
 
 
 
 
 
 
 
 
6f3618c
 
b45dd45
 
6f3618c
b45dd45
6f3618c
b45dd45
 
 
 
6f3618c
b45dd45
6f3618c
b45dd45
6f3618c
b45dd45
6f3618c
b45dd45
6f3618c
b45dd45
6f3618c
b45dd45
6f3618c
b45dd45
6f3618c
b45dd45
6f3618c
b45dd45
 
 
 
 
 
 
 
 
6f3618c
b45dd45
6f3618c
b45dd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f3618c
 
b45dd45
6f3618c
b45dd45
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
language:
- nl
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large V2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large V2

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5449
- Wer: 25.0953

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.841         | 0.2239 | 15   | 0.5933          | 48.4347 |
| 0.5965        | 0.4478 | 30   | 0.5012          | 27.9249 |
| 0.5018        | 0.6716 | 45   | 0.4670          | 25.0251 |
| 0.4578        | 0.8955 | 60   | 0.4569          | 27.6390 |
| 0.3824        | 1.1194 | 75   | 0.4603          | 27.2978 |
| 0.2738        | 1.3433 | 90   | 0.4537          | 25.0301 |
| 0.2375        | 1.5672 | 105  | 0.4516          | 24.4632 |
| 0.2573        | 1.7910 | 120  | 0.4381          | 25.3512 |
| 0.241         | 2.0149 | 135  | 0.4379          | 25.4766 |
| 0.1265        | 2.2388 | 150  | 0.4624          | 23.7809 |
| 0.1391        | 2.4627 | 165  | 0.4588          | 26.6406 |
| 0.1242        | 2.6866 | 180  | 0.4572          | 24.7642 |
| 0.1227        | 2.9104 | 195  | 0.4561          | 27.5738 |
| 0.0774        | 3.1343 | 210  | 0.4790          | 24.2474 |
| 0.0543        | 3.3582 | 225  | 0.4931          | 31.8483 |
| 0.0506        | 3.5821 | 240  | 0.5087          | 25.3010 |
| 0.056         | 3.8060 | 255  | 0.4933          | 27.6942 |
| 0.0527        | 4.0299 | 270  | 0.5009          | 26.2543 |
| 0.0233        | 4.2537 | 285  | 0.5447          | 27.8999 |
| 0.0193        | 4.4776 | 300  | 0.5458          | 27.0570 |
| 0.0167        | 4.7015 | 315  | 0.5421          | 24.5384 |
| 0.0183        | 4.9254 | 330  | 0.5449          | 25.0953 |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1