grib0ed0v commited on
Commit
ecce91b
1 Parent(s): c7d1365

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 286.49 +/- 19.35
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 265.42 +/- 12.41
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a184398bb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a184398bbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a184398bc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a184398bd00>", "_build": "<function ActorCriticPolicy._build at 0x7a184398bd90>", "forward": "<function ActorCriticPolicy.forward at 0x7a184398be20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a184398beb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a184398bf40>", "_predict": "<function ActorCriticPolicy._predict at 0x7a184398c040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a184398c0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a184398c160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a184398c1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a184392e140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727377270578873546, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY2Kzs6BgA/P48XvAru275zYhE8/WPsvAAAAAAAAAAAXS60vlt7Cj8Pyxc8inD1vqKvwr5iqTc9AAAAAAAAAADA0Ro+iI2APvlBqr5TWJO+7I/cveswbL0AAAAAAAAAAACbPD0rH7w/Og5CP3AJvT5rIRK9VYZmvQAAAAAAAAAARik5Phs5mry2roK64rjNONi0Cr4CAa05AACAPwAAgD/gJHQ+AfCwvKYvHLrnacY4OYoevvNZDjkAAIA/AACAPyC0ND7udY68Zo6rOyPuNbpf7Ai+NjINuwAAgD8AAIA/zfQGPUfHZD9IzYY848MOvwHVxz1dvlW9AAAAAAAAAACa2yo8DFCUP42tdz2w0xK/xazaPNWqoD0AAAAAAAAAAM12ET7zabo+5l1JvrPB2L6r5tM8N18gvQAAAAAAAAAAmgMQPMOBEbqA59C2M2GKslcvqjvDVPU1AACAPwAAgD+aQtS8abgPvIoovTySbnS8DtYJPeJf9D0AAIA/AACAPw1gPj4MEU0/wpsiPo2qCL8dTow+rhzDPAAAAAAAAAAA5lBBvWvKLz/tqN+8SVL4vjbl+LxaQTU9AAAAAAAAAACADn89OQKJP6L2iD6axCy/z2L6PS0+Dj4AAAAAAAAAAM1aIL1inhA+zSZVPZs/K74EFGW9xJ1KvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG07JtSAH3WMAWyUS8yMAXSUR0CbCTGcWj46dX2UKGgGR0BRH6fe1rqMaAdLmmgIR0CbCTWHDaXbdX2UKGgGR0BwTfkzXSSeaAdL3mgIR0CbCUsGxD9gdX2UKGgGR0Byr/B7/n4gaAdL/WgIR0CbCVFpwjt5dX2UKGgGR0Byxz4i5d4WaAdLvGgIR0CbCq7ZnL7odX2UKGgGR0BcNDtPYWcjaAdN6ANoCEdAmwq7SiM5wXV9lChoBkdAczkpXIU8FWgHS/VoCEdAmwsvTgEU03V9lChoBkdAcIHzGxUvPGgHS+9oCEdAmws/8IiTuHV9lChoBkdAc9QdaMaS92gHS+5oCEdAmwtKmXPZ7HV9lChoBkdAcg/w4bS7XmgHTQUBaAhHQJsLWwmmce91fZQoaAZHQHH84BNmDlJoB01HAWgIR0CbC5CNCJGfdX2UKGgGR0BuUg1zhgmaaAdL+2gIR0CbDIWIGhVVdX2UKGgGR0ByS5Bsyi22aAdL4mgIR0CbDIMr3CbddX2UKGgGR0Bwq1kXk5p8aAdL9GgIR0CbDNlA/s3RdX2UKGgGR0Bu2HCIk7fYaAdL/mgIR0CbDYpLmITHdX2UKGgGR0Bx1IG0NSZSaAdLz2gIR0CbDiQ4jrzHdX2UKGgGR0BwjKyE+PilaAdL2WgIR0CbDnQD3dsSdX2UKGgGR0Byi6aJAMUiaAdL72gIR0CbDrnMt9QXdX2UKGgGR0BxCsG1QZXNaAdL92gIR0CbDwz/ZM+NdX2UKGgGR0Bxvl4mkWRBaAdNAAFoCEdAmw9avmoze3V9lChoBkdAcWt/Z/Tb4GgHS/toCEdAmxB0t/WlM3V9lChoBkdAc44sS00FbGgHS+toCEdAmxC1UADJVHV9lChoBkdAcSuvt+kP+WgHS/xoCEdAmxER/y5I6XV9lChoBkdAcuyqgyuZC2gHTQIBaAhHQJsRKLbYbsF1fZQoaAZHQHAiNwNsnAtoB00VAWgIR0CbETKmKqGUdX2UKGgGR0Bx+qbe/Ho6aAdNDAFoCEdAmxF4VuaWonV9lChoBkdAcb02mpEQXmgHTQoBaAhHQJsRtpRGc4J1fZQoaAZHQHHXBhlUZNxoB0vZaAhHQJsR8OJ+Dvp1fZQoaAZHQHF1azJIUahoB0vpaAhHQJsR+yKNyYJ1fZQoaAZHQHC+1RgqmTFoB00BAWgIR0CbEnPlMh5gdX2UKGgGR0Bwl+Bz3h4uaAdL7mgIR0CbEvlXiiqRdX2UKGgGR0Bx04PtlZoxaAdL1WgIR0CbE0n8sMAndX2UKGgGR0By4AO09hZyaAdL2mgIR0CbFEmT1TR6dX2UKGgGR0BxvS0fHPu5aAdNCAFoCEdAmxS6HKwIMXV9lChoBkdAcJn45cTrV2gHTQcBaAhHQJsVELPUrkN1fZQoaAZHQHKEigoPTXtoB0vbaAhHQJss2iVSn+B1fZQoaAZHQHJbzpX6qKhoB01PAWgIR0CbLXCih37ldX2UKGgGR0BwfkfDDTBqaAdLzWgIR0CbLiR0lqrSdX2UKGgGR0Bvt47A+IM0aAdL6mgIR0CbLlkoF3Y+dX2UKGgGR0BvR41ejVQRaAdL72gIR0CbLlpMpPRBdX2UKGgGR0BwqDqKP4mDaAdL9GgIR0CbLpzTWoWIdX2UKGgGR0BzMDeTFERbaAdL+mgIR0CbLzftx+8XdX2UKGgGR0Bw9zCP6sQvaAdL1GgIR0CbL2m+j/ModX2UKGgGR0Bx+0Qe3hGZaAdNBwFoCEdAmzADQqqfe3V9lChoBkdAcwvRtgrpaGgHTT8BaAhHQJswEBFNL151fZQoaAZHQHEHX1BdD6ZoB0vqaAhHQJswxqh11W91fZQoaAZHQHFkAc94eLhoB00DAWgIR0CbMP5imVJMdX2UKGgGR0BzAuHM2WIHaAdNWAFoCEdAmzHJ40Mw13V9lChoBkdAb/fNC7btZ2gHS/ZoCEdAmzIjSThYNnV9lChoBkdATrzG1hLGrGgHS7doCEdAmzIphOP/73V9lChoBkdAcNmKbKA8S2gHS+JoCEdAmzLFopQUH3V9lChoBkdAcimv+OwPiGgHS81oCEdAmzNL2YfGMnV9lChoBkdAcspigkC3gGgHTRgBaAhHQJszZNBWxQl1fZQoaAZHQHCFM8TzundoB00TAWgIR0CbM5fdyksSdX2UKGgGR0BvGVOfukULaAdL5WgIR0CbNAv0AcT8dX2UKGgGR0ByI3ZmI0qIaAdL1GgIR0CbNB1k1/DtdX2UKGgGR0BwkvA0sOG1aAdLzGgIR0CbNCO938oAdX2UKGgGR0By0TkHUtqYaAdNBgFoCEdAmzRvN7jT8nV9lChoBkdAbyv+pfhMrWgHTQgBaAhHQJs0l5s0pEx1fZQoaAZHQG/Lur6tT1loB0veaAhHQJs1D6xgRbt1fZQoaAZHQHD7GD6Fds1oB0vlaAhHQJs2RT/ACXB1fZQoaAZHQHIvIczZYgdoB00FAWgIR0CbNs3IdU83dX2UKGgGR0BwWg6Kcd5qaAdL4GgIR0CbNvu/1xsEdX2UKGgGR0BzCEqAjIJaaAdL4mgIR0CbN1pz90ihdX2UKGgGR0BDcQw9JSR9aAdLj2gIR0CbN1oX9BKMdX2UKGgGR0BNNMOG0u14aAdLtGgIR0CbN2Mj/uLKdX2UKGgGR0BwJfLOiWVvaAdL9mgIR0CbN8pGFzuGdX2UKGgGR0Bw/pxm03OwaAdL5WgIR0CbOAQxesxPdX2UKGgGR0BwFI8vEjxDaAdL+GgIR0CbORKJVKf4dX2UKGgGR0BydZ7F85S4aAdL22gIR0CbOYsXzlLfdX2UKGgGR0Bwfe3UhFEzaAdL9GgIR0CbOdMw1zhhdX2UKGgGR0BujN/tpmEoaAdL42gIR0CbOfbaRISUdX2UKGgGR0BxTvZyuIRAaAdL4WgIR0CbOoRZlnRLdX2UKGgGR0ByAS/pMYdiaAdNNQFoCEdAmzrboOhCdHV9lChoBkdAcVWDO1OTJWgHS91oCEdAmzxsrupjt3V9lChoBkdAcsCXDWK/EmgHTQIBaAhHQJs8oHgP3BZ1fZQoaAZHQHF3Yna37UJoB0vgaAhHQJs871/Ue+51fZQoaAZHQHIH1LOAy2xoB0vnaAhHQJs9KMS9M9N1fZQoaAZHQG3QBt1p0wJoB00UAWgIR0CbPbe0ojOcdX2UKGgGR0ByzwPUaybAaAdNDQFoCEdAmz4m1c+qznV9lChoBkdAbgvV81Gb1GgHTQQBaAhHQJs+dkvsZ511fZQoaAZHQHGyjeTFERdoB0vQaAhHQJs+g1KoQ4F1fZQoaAZHQHJX3OKO1fFoB0v9aAhHQJs+iax5cC51fZQoaAZHQHEi7RnezldoB0vnaAhHQJs/fNbC79R1fZQoaAZHQHCHfxUedTZoB0vuaAhHQJs/7fVI7Nl1fZQoaAZHQHHTRBqsU7FoB0vnaAhHQJtAZe7cwg11fZQoaAZHQHKSs3yZrpJoB00CAWgIR0CbQIotcv/SdX2UKGgGR0BwjyMVDa4+aAdL4WgIR0CbQJoQWepXdX2UKGgGR0ByLJIbwSamaAdLw2gIR0CbQglTFVDKdX2UKGgGR0BwiO0E5hjOaAdL32gIR0CbQpj/dZaFdX2UKGgGR0Byqc1FYuCgaAdL8mgIR0CbQs8uSOindX2UKGgGR0BuvkZBLPD6aAdL42gIR0CbQ3sSkCV9dX2UKGgGR0BxR910T101aAdL42gIR0CbRD7NjbztdX2UKGgGR0ByFEQHzH0caAdL82gIR0CbRLu0TlDGdX2UKGgGR0BzJaOlwcYJaAdNRQFoCEdAm0TlnEl3QnV9lChoBkdAc4CvZyuIRGgHTRIBaAhHQJtFQTJyQxN1fZQoaAZHQHJbscMmWt5oB00SAWgIR0CbRYk0rK/3dX2UKGgGR0Buj3qNZNfxaAdL6WgIR0CbRhH+qBEsdX2UKGgGR0BwUZivxH5KaAdL22gIR0CbRjgOBlMAdX2UKGgGR0BxiTc2zfJnaAdL4GgIR0CbRpZZ0SyudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b0f994a0c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0f994a0ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0f994a0d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0f994a0dc0>", "_build": "<function ActorCriticPolicy._build at 0x7b0f994a0e50>", "forward": "<function ActorCriticPolicy.forward at 0x7b0f994a0ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0f994a0f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0f994a1000>", "_predict": "<function ActorCriticPolicy._predict at 0x7b0f994a1090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0f994a1120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0f994a11b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0f994a1240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b0f9944b880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1114112, "_total_timesteps": 1100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728375021836926543, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYFHD4s93A/8KJ8PPZFrr5kJYg9M09yvQAAAAAAAAAAM/F8PSmQJro425g3q/c0sbBUkzob07K2AACAPwAAAACAEec9ByVgPzKtKD6m89W+/pfEPfDyAzoAAAAAAAAAALPQPr04caE+hjPWPU8ic75LaeI6FGwAvAAAAAAAAAAAzT2GvHG1vj/jntq9dn+ePVIPMTxd8u28AAAAAAAAAACwwYG+Ch2CP5N4D77fauC+RCgyvnUoyD0AAAAAAAAAADPssz2PRnK64IItNwO/NDYzAta5G5NetgAAgD8AAAAAzaYhPHHPBz8Q21Y9FYXhvjRg+T19IkC9AAAAAAAAAABAhUq+yJuYvBqne7w3LsO6nYMEPhsPmzsAAIA/AACAPxNAO75fygs/4gUEPnKaqL79cTa9Zs7VPQAAAAAAAAAAsyNIvchpzby2tmE7L5hfPXR2zDuaJGw4AACAPwAAgD8tmgy+jDDTPkmYmz7mQNW+frWHPcmjrD0AAAAAAAAAAMoQcL4Y3vw+66p7Pjbair568BW9circPAAAAAAAAAAAIICAvowpYz+BZw6+DxGLvqLmtr6CuUE9AAAAAAAAAAAt97s+IQHBPiKl57163Xi+FY+OPWWX370AAAAAAAAAADMPWLwUbIC6TaIOOP20BzOTbMu6o28mtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.012829090909090901, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEL2x9G7SReMAWyUS9WMAXSUR0CWB+s8PnSwdX2UKGgGR0BwddVn27FsaAdNdAFoCEdAlghqnR9gGHV9lChoBkdAbfszollbvGgHTSMBaAhHQJYKaby6MBJ1fZQoaAZHQG/pQztTkyVoB00rAWgIR0CWCoPmPo3adX2UKGgGR0BuWxtpEhJRaAdNdQFoCEdAlgqQnH/953V9lChoBkdAbs2CxNZeRmgHTUUBaAhHQJYK79n9Nvh1fZQoaAZHQHIToYR/ViFoB00iAWgIR0CWDIX18LKFdX2UKGgGR0BxV/3bmEGraAdNUwFoCEdAlgyZhOP/73V9lChoBkdAcAlzLwF1S2gHTY8BaAhHQJYNHJEH+qB1fZQoaAZHQHEIgNPP9k1oB0vtaAhHQJYOsymALAp1fZQoaAZHQHLFHGsFMZhoB00WAWgIR0CWEB9Aood/dX2UKGgGR0BkU1i8WbgCaAdN6ANoCEdAlhAdAX2ugnV9lChoBkdAcVE0mMOwxGgHTQ8BaAhHQJYSDIikftB1fZQoaAZHQGtVs41gpjNoB02IAWgIR0CWEkxT850bdX2UKGgGR0BtvsqtozvaaAdNHwFoCEdAlhJeSr5qM3V9lChoBkdAbnVkJa7mMmgHTRIBaAhHQJYSh3NcGC91fZQoaAZHQHIdE3bVSXNoB0v0aAhHQJYS4U7CBPN1fZQoaAZHQHB9O4wyqMpoB00qAWgIR0CWEvecQRPHdX2UKGgGR0BxmGuNgjQiaAdNCQFoCEdAlhNuenQ6ZHV9lChoBkdAcNx5VfeDWmgHTfgBaAhHQJYTv9S/CZZ1fZQoaAZHQHDwCqABkqdoB006AWgIR0CWFMH5aePJdX2UKGgGR0By+ssd1dPdaAdNFQFoCEdAlhU8kdFOPHV9lChoBkdAceojdHlOoGgHTWEBaAhHQJYWG3d9Dx91fZQoaAZHQHKFAuyu6mRoB01RAWgIR0CWFrzyBkI5dX2UKGgGR0BwojRD1GsnaAdNVwFoCEdAlhdL+glF+nV9lChoBkdAcrqi1y/9HmgHTVoBaAhHQJYY3spobn51fZQoaAZHQHHkVinYQJ5oB000AWgIR0CWGSeAd4mkdX2UKGgGR0BCKf5ckdFOaAdL1WgIR0CWGWnB+F10dX2UKGgGR0Bw7Izch1TzaAdNMQFoCEdAlhtDFERao3V9lChoBkdAb4FSeiBXjmgHTT4BaAhHQJYcTFWGRFJ1fZQoaAZHQHGriAc1fmdoB00gAWgIR0CWHF7dznzQdX2UKGgGR0BxWPfm9xp+aAdNCAFoCEdAlhy6yv9tM3V9lChoBkdAcKLTH80k4WgHTU8BaAhHQJYc9JmNBGB1fZQoaAZHQHFhelKsdT5oB01vAWgIR0CWHRH2AXl9dX2UKGgGR0BwVdfkWAPNaAdNsAFoCEdAlh1CqIacZ3V9lChoBkdAcHXbyH2ys2gHTZUBaAhHQJYebYlIEr51fZQoaAZHQHJlAsPJ7sxoB0v7aAhHQJYfBEy+HrR1fZQoaAZHQHHzgjdHlOpoB02BAWgIR0CWILWYF7ladX2UKGgGR0Bu0/t6X0GvaAdNEQFoCEdAliG23F1jiHV9lChoBkdAcKoHC4z7/GgHTSEBaAhHQJYilQ+EAYJ1fZQoaAZHQHExu9Jz1btoB02OAWgIR0CWIzAaef7KdX2UKGgGR0Bt9/DiwSrYaAdL42gIR0CWJEqxTsIFdX2UKGgGR0Bw9kuanaWYaAdNYwFoCEdAliReJxeb/nV9lChoBkdAcYeQyRB/qmgHTSEBaAhHQJYklo7FKkF1fZQoaAZHQESazdk8RthoB0vraAhHQJYk0TSLIgh1fZQoaAZHQHNUKjSG8EpoB00MAWgIR0CWJUhTfixWdX2UKGgGR0BySOs1baAXaAdNGAFoCEdAliXWW2PT5XV9lChoBkdAcIJ0vGp++mgHTTQBaAhHQJYmE1WKdhB1fZQoaAZHQHFEBGc4HX5oB0v1aAhHQJYmZsvZh8Z1fZQoaAZHQHH16CcwxnFoB01CAWgIR0CWJn7sOXmedX2UKGgGR0BxjDHT7VJ+aAdNJAFoCEdAljnDeGfwqnV9lChoBkdAUUFpGnXNDGgHS6hoCEdAljr/YraufXV9lChoBkdAbzlCl7+kxmgHTRcBaAhHQJY7VhWo3rF1fZQoaAZHQHMTm5hBqsVoB00XAWgIR0CWPIby6MBIdX2UKGgGR0A7V+cH4XXRaAdLwmgIR0CWPJNLlFMJdX2UKGgGR0Bv4DLOiWVvaAdNKAFoCEdAlj4tKNAC4nV9lChoBkdAcOLKBd2Pk2gHTQEBaAhHQJY+fOs1baB1fZQoaAZHQHFBJGe+VTtoB00HAWgIR0CWPwHObAk+dX2UKGgGR0BxZlcY64lQaAdNDgFoCEdAlkAtM495hXV9lChoBkdAb3LoBaLXMGgHTQkBaAhHQJZBk287IT51fZQoaAZHQG1buUD+zdFoB00mAWgIR0CWQq0NSZSfdX2UKGgGR0ByyVhVlwtKaAdNPQFoCEdAlkLlCPZIx3V9lChoBkdAY5ALYPGyX2gHTegDaAhHQJZEFh4MWoF1fZQoaAZHQEPOteUpuuRoB0vhaAhHQJZEw3cYZVJ1fZQoaAZHQG8LTXarWAhoB00MAWgIR0CWRO9y925hdX2UKGgGR0BxmNWFN+LFaAdNBgFoCEdAlkT+m3vx6XV9lChoBkdAcnsdtl7MPmgHTTIBaAhHQJZFC/BWPtF1fZQoaAZHQHNEH4CZF5RoB000AWgIR0CWRyYvWYnfdX2UKGgGR0BmWh4fOlfraAdN6ANoCEdAlkgxZpztC3V9lChoBkdAcTjikwevIWgHTSYBaAhHQJZIQ7eVLSN1fZQoaAZHQHOB9E5QxetoB00wAWgIR0CWSQBxgiNbdX2UKGgGR0BxamYRdyDJaAdNYAJoCEdAlkkbTlT3qXV9lChoBkdAcHUsJpnHvWgHTSYBaAhHQJZJjcKw6hh1fZQoaAZHQHMVFsLv1DloB00bAWgIR0CWSjLncL0BdX2UKGgGR0BxT3HbRF7VaAdNFQFoCEdAlkr72HtWuHV9lChoBkdAb/LSb6P8ymgHS/ZoCEdAlktojSofjnV9lChoBkdAcTlVx0dRzmgHTSMBaAhHQJZLnvnbItF1fZQoaAZHQG7IFr2xptdoB00GAWgIR0CWTMDmKZUldX2UKGgGR0BxuhhTfixWaAdNLQFoCEdAlk3mxptaZHV9lChoBkdAbqF/4Irvs2gHTTkBaAhHQJZOOjfvWpZ1fZQoaAZHQHABOZ9d/rloB01BAWgIR0CWTlCCz1K5dX2UKGgGR0BwWBbs4T9LaAdNCQJoCEdAlk6/DpC8e3V9lChoBkdActKDuSfUWmgHTRkBaAhHQJZPfa37UG51fZQoaAZHQHLKYQ8OkLxoB00eAWgIR0CWUIyNGViXdX2UKGgGR0Bxx/ftQbdaaAdNJQFoCEdAllCt3B55aHV9lChoBkdAcjOzmOlwcmgHTRcBaAhHQJZQ+nfl6qt1fZQoaAZHQHJyDsMRYihoB00GAWgIR0CWUaFr2xptdX2UKGgGR0BK7r+HaewtaAdL32gIR0CWUa5NoJzDdX2UKGgGR0BwBQ56t1ZDaAdNUAFoCEdAllL4icG1QnV9lChoBkdAcqvvd/J/5WgHTR4BaAhHQJZUx3jdYXB1fZQoaAZHQHDp36qKgqVoB0vvaAhHQJZU4cwQDmt1fZQoaAZHQHF4X9R77bdoB00AAWgIR0CWVQP+XJHRdX2UKGgGR0ByIavs7dSEaAdNAgFoCEdAllVhBVuJlHV9lChoBkdAcgt+A3DNyGgHTYwBaAhHQJZWSbpeNT91fZQoaAZHQGUeWuHN5dJoB03oA2gIR0CWVo+VTrE+dX2UKGgGR0ByIM3FUADJaAdNDgFoCEdAllceRPoFFHV9lChoBkdAcT259Vmz0GgHS+toCEdAllc7zCk43nV9lChoBkdAOS4TsY2sJmgHS89oCEdAllezin5zo3V9lChoBkdAb000D2alUWgHTUABaAhHQJZXxggHNX51fZQoaAZHQHEAarzXjENoB00gAWgIR0CWWOA+6iCbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 272, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b1e3e2f9a8073b81fa85d3275e89823bc103a3d9d6843e542d26ec85306f368
3
- size 147992
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c89af9144d3d9f10e441d9c398b2565e62c6f58ad871173fc717381262f3349e
3
+ size 148064
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7a184398bb50>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a184398bbe0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a184398bc70>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a184398bd00>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7a184398bd90>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7a184398be20>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a184398beb0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a184398bf40>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7a184398c040>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a184398c0d0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a184398c160>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a184398c1f0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7a184392e140>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1507328,
25
- "_total_timesteps": 1500000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1727377270578873546,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY2Kzs6BgA/P48XvAru275zYhE8/WPsvAAAAAAAAAAAXS60vlt7Cj8Pyxc8inD1vqKvwr5iqTc9AAAAAAAAAADA0Ro+iI2APvlBqr5TWJO+7I/cveswbL0AAAAAAAAAAACbPD0rH7w/Og5CP3AJvT5rIRK9VYZmvQAAAAAAAAAARik5Phs5mry2roK64rjNONi0Cr4CAa05AACAPwAAgD/gJHQ+AfCwvKYvHLrnacY4OYoevvNZDjkAAIA/AACAPyC0ND7udY68Zo6rOyPuNbpf7Ai+NjINuwAAgD8AAIA/zfQGPUfHZD9IzYY848MOvwHVxz1dvlW9AAAAAAAAAACa2yo8DFCUP42tdz2w0xK/xazaPNWqoD0AAAAAAAAAAM12ET7zabo+5l1JvrPB2L6r5tM8N18gvQAAAAAAAAAAmgMQPMOBEbqA59C2M2GKslcvqjvDVPU1AACAPwAAgD+aQtS8abgPvIoovTySbnS8DtYJPeJf9D0AAIA/AACAPw1gPj4MEU0/wpsiPo2qCL8dTow+rhzDPAAAAAAAAAAA5lBBvWvKLz/tqN+8SVL4vjbl+LxaQTU9AAAAAAAAAACADn89OQKJP6L2iD6axCy/z2L6PS0+Dj4AAAAAAAAAAM1aIL1inhA+zSZVPZs/K74EFGW9xJ1KvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG07JtSAH3WMAWyUS8yMAXSUR0CbCTGcWj46dX2UKGgGR0BRH6fe1rqMaAdLmmgIR0CbCTWHDaXbdX2UKGgGR0BwTfkzXSSeaAdL3mgIR0CbCUsGxD9gdX2UKGgGR0Byr/B7/n4gaAdL/WgIR0CbCVFpwjt5dX2UKGgGR0Byxz4i5d4WaAdLvGgIR0CbCq7ZnL7odX2UKGgGR0BcNDtPYWcjaAdN6ANoCEdAmwq7SiM5wXV9lChoBkdAczkpXIU8FWgHS/VoCEdAmwsvTgEU03V9lChoBkdAcIHzGxUvPGgHS+9oCEdAmws/8IiTuHV9lChoBkdAc9QdaMaS92gHS+5oCEdAmwtKmXPZ7HV9lChoBkdAcg/w4bS7XmgHTQUBaAhHQJsLWwmmce91fZQoaAZHQHH84BNmDlJoB01HAWgIR0CbC5CNCJGfdX2UKGgGR0BuUg1zhgmaaAdL+2gIR0CbDIWIGhVVdX2UKGgGR0ByS5Bsyi22aAdL4mgIR0CbDIMr3CbddX2UKGgGR0Bwq1kXk5p8aAdL9GgIR0CbDNlA/s3RdX2UKGgGR0Bu2HCIk7fYaAdL/mgIR0CbDYpLmITHdX2UKGgGR0Bx1IG0NSZSaAdLz2gIR0CbDiQ4jrzHdX2UKGgGR0BwjKyE+PilaAdL2WgIR0CbDnQD3dsSdX2UKGgGR0Byi6aJAMUiaAdL72gIR0CbDrnMt9QXdX2UKGgGR0BxCsG1QZXNaAdL92gIR0CbDwz/ZM+NdX2UKGgGR0Bxvl4mkWRBaAdNAAFoCEdAmw9avmoze3V9lChoBkdAcWt/Z/Tb4GgHS/toCEdAmxB0t/WlM3V9lChoBkdAc44sS00FbGgHS+toCEdAmxC1UADJVHV9lChoBkdAcSuvt+kP+WgHS/xoCEdAmxER/y5I6XV9lChoBkdAcuyqgyuZC2gHTQIBaAhHQJsRKLbYbsF1fZQoaAZHQHAiNwNsnAtoB00VAWgIR0CbETKmKqGUdX2UKGgGR0Bx+qbe/Ho6aAdNDAFoCEdAmxF4VuaWonV9lChoBkdAcb02mpEQXmgHTQoBaAhHQJsRtpRGc4J1fZQoaAZHQHHXBhlUZNxoB0vZaAhHQJsR8OJ+Dvp1fZQoaAZHQHF1azJIUahoB0vpaAhHQJsR+yKNyYJ1fZQoaAZHQHC+1RgqmTFoB00BAWgIR0CbEnPlMh5gdX2UKGgGR0Bwl+Bz3h4uaAdL7mgIR0CbEvlXiiqRdX2UKGgGR0Bx04PtlZoxaAdL1WgIR0CbE0n8sMAndX2UKGgGR0By4AO09hZyaAdL2mgIR0CbFEmT1TR6dX2UKGgGR0BxvS0fHPu5aAdNCAFoCEdAmxS6HKwIMXV9lChoBkdAcJn45cTrV2gHTQcBaAhHQJsVELPUrkN1fZQoaAZHQHKEigoPTXtoB0vbaAhHQJss2iVSn+B1fZQoaAZHQHJbzpX6qKhoB01PAWgIR0CbLXCih37ldX2UKGgGR0BwfkfDDTBqaAdLzWgIR0CbLiR0lqrSdX2UKGgGR0Bvt47A+IM0aAdL6mgIR0CbLlkoF3Y+dX2UKGgGR0BvR41ejVQRaAdL72gIR0CbLlpMpPRBdX2UKGgGR0BwqDqKP4mDaAdL9GgIR0CbLpzTWoWIdX2UKGgGR0BzMDeTFERbaAdL+mgIR0CbLzftx+8XdX2UKGgGR0Bw9zCP6sQvaAdL1GgIR0CbL2m+j/ModX2UKGgGR0Bx+0Qe3hGZaAdNBwFoCEdAmzADQqqfe3V9lChoBkdAcwvRtgrpaGgHTT8BaAhHQJswEBFNL151fZQoaAZHQHEHX1BdD6ZoB0vqaAhHQJswxqh11W91fZQoaAZHQHFkAc94eLhoB00DAWgIR0CbMP5imVJMdX2UKGgGR0BzAuHM2WIHaAdNWAFoCEdAmzHJ40Mw13V9lChoBkdAb/fNC7btZ2gHS/ZoCEdAmzIjSThYNnV9lChoBkdATrzG1hLGrGgHS7doCEdAmzIphOP/73V9lChoBkdAcNmKbKA8S2gHS+JoCEdAmzLFopQUH3V9lChoBkdAcimv+OwPiGgHS81oCEdAmzNL2YfGMnV9lChoBkdAcspigkC3gGgHTRgBaAhHQJszZNBWxQl1fZQoaAZHQHCFM8TzundoB00TAWgIR0CbM5fdyksSdX2UKGgGR0BvGVOfukULaAdL5WgIR0CbNAv0AcT8dX2UKGgGR0ByI3ZmI0qIaAdL1GgIR0CbNB1k1/DtdX2UKGgGR0BwkvA0sOG1aAdLzGgIR0CbNCO938oAdX2UKGgGR0By0TkHUtqYaAdNBgFoCEdAmzRvN7jT8nV9lChoBkdAbyv+pfhMrWgHTQgBaAhHQJs0l5s0pEx1fZQoaAZHQG/Lur6tT1loB0veaAhHQJs1D6xgRbt1fZQoaAZHQHD7GD6Fds1oB0vlaAhHQJs2RT/ACXB1fZQoaAZHQHIvIczZYgdoB00FAWgIR0CbNs3IdU83dX2UKGgGR0BwWg6Kcd5qaAdL4GgIR0CbNvu/1xsEdX2UKGgGR0BzCEqAjIJaaAdL4mgIR0CbN1pz90ihdX2UKGgGR0BDcQw9JSR9aAdLj2gIR0CbN1oX9BKMdX2UKGgGR0BNNMOG0u14aAdLtGgIR0CbN2Mj/uLKdX2UKGgGR0BwJfLOiWVvaAdL9mgIR0CbN8pGFzuGdX2UKGgGR0Bw/pxm03OwaAdL5WgIR0CbOAQxesxPdX2UKGgGR0BwFI8vEjxDaAdL+GgIR0CbORKJVKf4dX2UKGgGR0BydZ7F85S4aAdL22gIR0CbOYsXzlLfdX2UKGgGR0Bwfe3UhFEzaAdL9GgIR0CbOdMw1zhhdX2UKGgGR0BujN/tpmEoaAdL42gIR0CbOfbaRISUdX2UKGgGR0BxTvZyuIRAaAdL4WgIR0CbOoRZlnRLdX2UKGgGR0ByAS/pMYdiaAdNNQFoCEdAmzrboOhCdHV9lChoBkdAcVWDO1OTJWgHS91oCEdAmzxsrupjt3V9lChoBkdAcsCXDWK/EmgHTQIBaAhHQJs8oHgP3BZ1fZQoaAZHQHF3Yna37UJoB0vgaAhHQJs871/Ue+51fZQoaAZHQHIH1LOAy2xoB0vnaAhHQJs9KMS9M9N1fZQoaAZHQG3QBt1p0wJoB00UAWgIR0CbPbe0ojOcdX2UKGgGR0ByzwPUaybAaAdNDQFoCEdAmz4m1c+qznV9lChoBkdAbgvV81Gb1GgHTQQBaAhHQJs+dkvsZ511fZQoaAZHQHGyjeTFERdoB0vQaAhHQJs+g1KoQ4F1fZQoaAZHQHJX3OKO1fFoB0v9aAhHQJs+iax5cC51fZQoaAZHQHEi7RnezldoB0vnaAhHQJs/fNbC79R1fZQoaAZHQHCHfxUedTZoB0vuaAhHQJs/7fVI7Nl1fZQoaAZHQHHTRBqsU7FoB0vnaAhHQJtAZe7cwg11fZQoaAZHQHKSs3yZrpJoB00CAWgIR0CbQIotcv/SdX2UKGgGR0BwjyMVDa4+aAdL4WgIR0CbQJoQWepXdX2UKGgGR0ByLJIbwSamaAdLw2gIR0CbQglTFVDKdX2UKGgGR0BwiO0E5hjOaAdL32gIR0CbQpj/dZaFdX2UKGgGR0Byqc1FYuCgaAdL8mgIR0CbQs8uSOindX2UKGgGR0BuvkZBLPD6aAdL42gIR0CbQ3sSkCV9dX2UKGgGR0BxR910T101aAdL42gIR0CbRD7NjbztdX2UKGgGR0ByFEQHzH0caAdL82gIR0CbRLu0TlDGdX2UKGgGR0BzJaOlwcYJaAdNRQFoCEdAm0TlnEl3QnV9lChoBkdAc4CvZyuIRGgHTRIBaAhHQJtFQTJyQxN1fZQoaAZHQHJbscMmWt5oB00SAWgIR0CbRYk0rK/3dX2UKGgGR0Buj3qNZNfxaAdL6WgIR0CbRhH+qBEsdX2UKGgGR0BwUZivxH5KaAdL22gIR0CbRjgOBlMAdX2UKGgGR0BxiTc2zfJnaAdL4GgIR0CbRpZZ0SyudWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 460,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -84,7 +84,7 @@
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 5,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b0f994a0c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0f994a0ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0f994a0d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0f994a0dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b0f994a0e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b0f994a0ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0f994a0f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0f994a1000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b0f994a1090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0f994a1120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0f994a11b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0f994a1240>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b0f9944b880>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1114112,
25
+ "_total_timesteps": 1100000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1728375021836926543,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYFHD4s93A/8KJ8PPZFrr5kJYg9M09yvQAAAAAAAAAAM/F8PSmQJro425g3q/c0sbBUkzob07K2AACAPwAAAACAEec9ByVgPzKtKD6m89W+/pfEPfDyAzoAAAAAAAAAALPQPr04caE+hjPWPU8ic75LaeI6FGwAvAAAAAAAAAAAzT2GvHG1vj/jntq9dn+ePVIPMTxd8u28AAAAAAAAAACwwYG+Ch2CP5N4D77fauC+RCgyvnUoyD0AAAAAAAAAADPssz2PRnK64IItNwO/NDYzAta5G5NetgAAgD8AAAAAzaYhPHHPBz8Q21Y9FYXhvjRg+T19IkC9AAAAAAAAAABAhUq+yJuYvBqne7w3LsO6nYMEPhsPmzsAAIA/AACAPxNAO75fygs/4gUEPnKaqL79cTa9Zs7VPQAAAAAAAAAAsyNIvchpzby2tmE7L5hfPXR2zDuaJGw4AACAPwAAgD8tmgy+jDDTPkmYmz7mQNW+frWHPcmjrD0AAAAAAAAAAMoQcL4Y3vw+66p7Pjbair568BW9circPAAAAAAAAAAAIICAvowpYz+BZw6+DxGLvqLmtr6CuUE9AAAAAAAAAAAt97s+IQHBPiKl57163Xi+FY+OPWWX370AAAAAAAAAADMPWLwUbIC6TaIOOP20BzOTbMu6o28mtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.012829090909090901,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEL2x9G7SReMAWyUS9WMAXSUR0CWB+s8PnSwdX2UKGgGR0BwddVn27FsaAdNdAFoCEdAlghqnR9gGHV9lChoBkdAbfszollbvGgHTSMBaAhHQJYKaby6MBJ1fZQoaAZHQG/pQztTkyVoB00rAWgIR0CWCoPmPo3adX2UKGgGR0BuWxtpEhJRaAdNdQFoCEdAlgqQnH/953V9lChoBkdAbs2CxNZeRmgHTUUBaAhHQJYK79n9Nvh1fZQoaAZHQHIToYR/ViFoB00iAWgIR0CWDIX18LKFdX2UKGgGR0BxV/3bmEGraAdNUwFoCEdAlgyZhOP/73V9lChoBkdAcAlzLwF1S2gHTY8BaAhHQJYNHJEH+qB1fZQoaAZHQHEIgNPP9k1oB0vtaAhHQJYOsymALAp1fZQoaAZHQHLFHGsFMZhoB00WAWgIR0CWEB9Aood/dX2UKGgGR0BkU1i8WbgCaAdN6ANoCEdAlhAdAX2ugnV9lChoBkdAcVE0mMOwxGgHTQ8BaAhHQJYSDIikftB1fZQoaAZHQGtVs41gpjNoB02IAWgIR0CWEkxT850bdX2UKGgGR0BtvsqtozvaaAdNHwFoCEdAlhJeSr5qM3V9lChoBkdAbnVkJa7mMmgHTRIBaAhHQJYSh3NcGC91fZQoaAZHQHIdE3bVSXNoB0v0aAhHQJYS4U7CBPN1fZQoaAZHQHB9O4wyqMpoB00qAWgIR0CWEvecQRPHdX2UKGgGR0BxmGuNgjQiaAdNCQFoCEdAlhNuenQ6ZHV9lChoBkdAcNx5VfeDWmgHTfgBaAhHQJYTv9S/CZZ1fZQoaAZHQHDwCqABkqdoB006AWgIR0CWFMH5aePJdX2UKGgGR0By+ssd1dPdaAdNFQFoCEdAlhU8kdFOPHV9lChoBkdAceojdHlOoGgHTWEBaAhHQJYWG3d9Dx91fZQoaAZHQHKFAuyu6mRoB01RAWgIR0CWFrzyBkI5dX2UKGgGR0BwojRD1GsnaAdNVwFoCEdAlhdL+glF+nV9lChoBkdAcrqi1y/9HmgHTVoBaAhHQJYY3spobn51fZQoaAZHQHHkVinYQJ5oB000AWgIR0CWGSeAd4mkdX2UKGgGR0BCKf5ckdFOaAdL1WgIR0CWGWnB+F10dX2UKGgGR0Bw7Izch1TzaAdNMQFoCEdAlhtDFERao3V9lChoBkdAb4FSeiBXjmgHTT4BaAhHQJYcTFWGRFJ1fZQoaAZHQHGriAc1fmdoB00gAWgIR0CWHF7dznzQdX2UKGgGR0BxWPfm9xp+aAdNCAFoCEdAlhy6yv9tM3V9lChoBkdAcKLTH80k4WgHTU8BaAhHQJYc9JmNBGB1fZQoaAZHQHFhelKsdT5oB01vAWgIR0CWHRH2AXl9dX2UKGgGR0BwVdfkWAPNaAdNsAFoCEdAlh1CqIacZ3V9lChoBkdAcHXbyH2ys2gHTZUBaAhHQJYebYlIEr51fZQoaAZHQHJlAsPJ7sxoB0v7aAhHQJYfBEy+HrR1fZQoaAZHQHHzgjdHlOpoB02BAWgIR0CWILWYF7ladX2UKGgGR0Bu0/t6X0GvaAdNEQFoCEdAliG23F1jiHV9lChoBkdAcKoHC4z7/GgHTSEBaAhHQJYilQ+EAYJ1fZQoaAZHQHExu9Jz1btoB02OAWgIR0CWIzAaef7KdX2UKGgGR0Bt9/DiwSrYaAdL42gIR0CWJEqxTsIFdX2UKGgGR0Bw9kuanaWYaAdNYwFoCEdAliReJxeb/nV9lChoBkdAcYeQyRB/qmgHTSEBaAhHQJYklo7FKkF1fZQoaAZHQESazdk8RthoB0vraAhHQJYk0TSLIgh1fZQoaAZHQHNUKjSG8EpoB00MAWgIR0CWJUhTfixWdX2UKGgGR0BySOs1baAXaAdNGAFoCEdAliXWW2PT5XV9lChoBkdAcIJ0vGp++mgHTTQBaAhHQJYmE1WKdhB1fZQoaAZHQHFEBGc4HX5oB0v1aAhHQJYmZsvZh8Z1fZQoaAZHQHH16CcwxnFoB01CAWgIR0CWJn7sOXmedX2UKGgGR0BxjDHT7VJ+aAdNJAFoCEdAljnDeGfwqnV9lChoBkdAUUFpGnXNDGgHS6hoCEdAljr/YraufXV9lChoBkdAbzlCl7+kxmgHTRcBaAhHQJY7VhWo3rF1fZQoaAZHQHMTm5hBqsVoB00XAWgIR0CWPIby6MBIdX2UKGgGR0A7V+cH4XXRaAdLwmgIR0CWPJNLlFMJdX2UKGgGR0Bv4DLOiWVvaAdNKAFoCEdAlj4tKNAC4nV9lChoBkdAcOLKBd2Pk2gHTQEBaAhHQJY+fOs1baB1fZQoaAZHQHFBJGe+VTtoB00HAWgIR0CWPwHObAk+dX2UKGgGR0BxZlcY64lQaAdNDgFoCEdAlkAtM495hXV9lChoBkdAb3LoBaLXMGgHTQkBaAhHQJZBk287IT51fZQoaAZHQG1buUD+zdFoB00mAWgIR0CWQq0NSZSfdX2UKGgGR0ByyVhVlwtKaAdNPQFoCEdAlkLlCPZIx3V9lChoBkdAY5ALYPGyX2gHTegDaAhHQJZEFh4MWoF1fZQoaAZHQEPOteUpuuRoB0vhaAhHQJZEw3cYZVJ1fZQoaAZHQG8LTXarWAhoB00MAWgIR0CWRO9y925hdX2UKGgGR0BxmNWFN+LFaAdNBgFoCEdAlkT+m3vx6XV9lChoBkdAcnsdtl7MPmgHTTIBaAhHQJZFC/BWPtF1fZQoaAZHQHNEH4CZF5RoB000AWgIR0CWRyYvWYnfdX2UKGgGR0BmWh4fOlfraAdN6ANoCEdAlkgxZpztC3V9lChoBkdAcTjikwevIWgHTSYBaAhHQJZIQ7eVLSN1fZQoaAZHQHOB9E5QxetoB00wAWgIR0CWSQBxgiNbdX2UKGgGR0BxamYRdyDJaAdNYAJoCEdAlkkbTlT3qXV9lChoBkdAcHUsJpnHvWgHTSYBaAhHQJZJjcKw6hh1fZQoaAZHQHMVFsLv1DloB00bAWgIR0CWSjLncL0BdX2UKGgGR0BxT3HbRF7VaAdNFQFoCEdAlkr72HtWuHV9lChoBkdAb/LSb6P8ymgHS/ZoCEdAlktojSofjnV9lChoBkdAcTlVx0dRzmgHTSMBaAhHQJZLnvnbItF1fZQoaAZHQG7IFr2xptdoB00GAWgIR0CWTMDmKZUldX2UKGgGR0BxuhhTfixWaAdNLQFoCEdAlk3mxptaZHV9lChoBkdAbqF/4Irvs2gHTTkBaAhHQJZOOjfvWpZ1fZQoaAZHQHABOZ9d/rloB01BAWgIR0CWTlCCz1K5dX2UKGgGR0BwWBbs4T9LaAdNCQJoCEdAlk6/DpC8e3V9lChoBkdActKDuSfUWmgHTRkBaAhHQJZPfa37UG51fZQoaAZHQHLKYQ8OkLxoB00eAWgIR0CWUIyNGViXdX2UKGgGR0Bxx/ftQbdaaAdNJQFoCEdAllCt3B55aHV9lChoBkdAcjOzmOlwcmgHTRcBaAhHQJZQ+nfl6qt1fZQoaAZHQHJyDsMRYihoB00GAWgIR0CWUaFr2xptdX2UKGgGR0BK7r+HaewtaAdL32gIR0CWUa5NoJzDdX2UKGgGR0BwBQ56t1ZDaAdNUAFoCEdAllL4icG1QnV9lChoBkdAcqvvd/J/5WgHTR4BaAhHQJZUx3jdYXB1fZQoaAZHQHDp36qKgqVoB0vvaAhHQJZU4cwQDmt1fZQoaAZHQHF4X9R77bdoB00AAWgIR0CWVQP+XJHRdX2UKGgGR0ByIavs7dSEaAdNAgFoCEdAllVhBVuJlHV9lChoBkdAcgt+A3DNyGgHTYwBaAhHQJZWSbpeNT91fZQoaAZHQGUeWuHN5dJoB03oA2gIR0CWVo+VTrE+dX2UKGgGR0ByIM3FUADJaAdNDgFoCEdAllceRPoFFHV9lChoBkdAcT259Vmz0GgHS+toCEdAllc7zCk43nV9lChoBkdAOS4TsY2sJmgHS89oCEdAllezin5zo3V9lChoBkdAb000D2alUWgHTUABaAhHQJZXxggHNX51fZQoaAZHQHEAarzXjENoB00gAWgIR0CWWOA+6iCbdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 272,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c83267b9e7b5c1425362bcedf12b62bb0452df01c859b60b18a7b100e9fc0a32
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:297a138cfa3b6da0a3332452428318b11731c3c19974cfdafe626de0affb9051
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:69d0e5a2a0cf21622c85d0709ce9f1ee7580d97cbefdc2d99a582f97fe7fa13a
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12592f3767e876b3c4481ce5e0e16ec2c061394bec5fd47c0953a879099e59b1
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 286.4915123539632, "std_reward": 19.352386613418464, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-26T19:32:36.316586"}
 
1
+ {"mean_reward": 265.41581158063366, "std_reward": 12.413445776201447, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-08T08:32:10.675217"}