Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-default-LunarLander-v2.zip +3 -0
- ppo-default-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-default-LunarLander-v2/data +95 -0
- ppo-default-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-default-LunarLander-v2/policy.pth +3 -0
- ppo-default-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-default-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.88 +/- 26.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb18156e280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb18156e310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb18156e3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb18156e430>", "_build": "<function ActorCriticPolicy._build at 0x7fb18156e4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb18156e550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb18156e5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb18156e670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb18156e700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb18156e790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb18156e820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb18156e8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb181568870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677962199612429031, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDkHj6QI4A/luIhPsc3t77HfIs982ogPQAAAAAAAAAAAGXavMMNK7or56O7zW57tn+/KjvVs7s6AACAPwAAgD8a7Zm99tRPutgZhzvTD2k4zztDu0IJKboAAIA/AACAP023mz323Fy6rjm0vBILBT2qJ0S6vmzlvQAAgD8AAIA/Tc0tvcPxW7oVCfG4ZvQmtMCNL7obgQw4AACAPwAAgD+a+cm9PdpbuWPoZ7tjY8o8VnqtuzGeE7wAAIA/AACAP0C4lr2ufa66SjfeOv60hDYD4Wo6CkP+uQAAgD8AAIA/zaUzvUiHh7rqbpm7ALfqtjwqlrrucbI6AACAPwAAgD+afIC8SMeJuj8PKDylxdm1eQvqOVLhw7QAAIA/AACAPwDVab2uoaK6NgZSuwEeSjj+Gge6TSLmOQAAgD8AAIA/xqKSvpPNBT9w604+7qBsvvOTxLsQoeo8AAAAAAAAAABNuIy9bhyLPn2tqDyDBWG+KQOJuxYBuj0AAAAAAAAAAHOUmr1IpY26eL0iPImYfDZdnga73bhrNQAAgD8AAIA/zQr9PIWjobkOati7tiRVtgWTk7vyrMc1AACAPwAAgD8ACla8Kbgcuq3ijbq074K1xOSCuQASqTkAAIA/AACAP81SJbzh0Im6NYH/uFfb5rNMEgm4AYIUOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIa2PshJevYUCUhpRSlIwBbJRN6AOMAXSUR0CUWEx2St/4dX2UKGgGaAloD0MIzCVV2004Z0CUhpRSlGgVTegDaBZHQJRZLhky1u11fZQoaAZoCWgPQwh7SWO0juRjQJSGlFKUaBVN6ANoFkdAlFqIA80UGnV9lChoBmgJaA9DCKa6gJeZ2WRAlIaUUpRoFU3oA2gWR0CUY5ALy+YddX2UKGgGaAloD0MIRiI0gg29ZkCUhpRSlGgVTegDaBZHQJRrWl3yI551fZQoaAZoCWgPQwj/sKVHUzdnQJSGlFKUaBVN6ANoFkdAlJKEFjd56nV9lChoBmgJaA9DCOEIUil2uVtAlIaUUpRoFU3oA2gWR0CUk1N70Fr3dX2UKGgGaAloD0MIUb8LW7OdOECUhpRSlGgVTQ8BaBZHQJSXJIJ7b+N1fZQoaAZoCWgPQwjrjVph+jJgQJSGlFKUaBVN6ANoFkdAlJxYt6HCXXV9lChoBmgJaA9DCNl5G5udjmRAlIaUUpRoFU3oA2gWR0CUoFcH4XXRdX2UKGgGaAloD0MIdZKtLifOZkCUhpRSlGgVTegDaBZHQJSidQJokAx1fZQoaAZoCWgPQwhLj6Z6Mr1gQJSGlFKUaBVN6ANoFkdAlKMBf4REnnV9lChoBmgJaA9DCENVTKWfu2VAlIaUUpRoFU3oA2gWR0CUpIsyBTXKdX2UKGgGaAloD0MIejiB6bTIYkCUhpRSlGgVTegDaBZHQJSlXn5i3G51fZQoaAZoCWgPQwi5/l2fuYRjQJSGlFKUaBVN6ANoFkdAlKZILG7z1HV9lChoBmgJaA9DCC+ISE27iDBAlIaUUpRoFUv5aBZHQJSmwtNBWxR1fZQoaAZoCWgPQwhINIEiFophQJSGlFKUaBVN6ANoFkdAlKn7tzCDVnV9lChoBmgJaA9DCIqRJXMsN0pAlIaUUpRoFUv1aBZHQJSvaPtD2J11fZQoaAZoCWgPQwgaFM0DWD1kQJSGlFKUaBVN6ANoFkdAlLC3rt3OfXV9lChoBmgJaA9DCHlafuAqq0FAlIaUUpRoFU0GAWgWR0CUsgjMFEApdX2UKGgGaAloD0MIUbzK2iZ8YECUhpRSlGgVTegDaBZHQJSyW98JD3N1fZQoaAZoCWgPQwjVzFoKyIliQJSGlFKUaBVN6ANoFkdAlLLf2oNutXV9lChoBmgJaA9DCNi2KLPBWWBAlIaUUpRoFU3oA2gWR0CUs5vzvqkedX2UKGgGaAloD0MIamyvBb03/j+UhpRSlGgVTRkBaBZHQJSzwvduYQd1fZQoaAZoCWgPQwiYhuEjYn5hQJSGlFKUaBVN6ANoFkdAlLm+CXhOxnV9lChoBmgJaA9DCIaTNH9MN2ZAlIaUUpRoFU3oA2gWR0CU6inaWX1KdX2UKGgGaAloD0MI/WfNjz+jZUCUhpRSlGgVTegDaBZHQJTqyZXuE251fZQoaAZoCWgPQwjq501FqjliQJSGlFKUaBVN6ANoFkdAlPKYNqgyunV9lChoBmgJaA9DCJpC5zX2vmJAlIaUUpRoFU3oA2gWR0CU9wD8LroodX2UKGgGaAloD0MIBaOSOgGUZkCUhpRSlGgVTegDaBZHQJT5Nc1O0sx1fZQoaAZoCWgPQwhJhEawcW9LQJSGlFKUaBVL42gWR0CU+jJOWSlndX2UKGgGaAloD0MIH9sy4CxcZ0CUhpRSlGgVTegDaBZHQJT+RfMOf/Z1fZQoaAZoCWgPQwg4gem07lxiQJSGlFKUaBVN6ANoFkdAlP8gB5ooNXV9lChoBmgJaA9DCNpYiXnWt2FAlIaUUpRoFU3oA2gWR0CVBJQOnVG1dX2UKGgGaAloD0MIGhpPBPEhZECUhpRSlGgVTegDaBZHQJUMvZPEbYN1fZQoaAZoCWgPQwjNP/omzdNhQJSGlFKUaBVN6ANoFkdAlQ6vCZWq+HV9lChoBmgJaA9DCFcnZyhuX2dAlIaUUpRoFU3oA2gWR0CVEJXnyNGWdX2UKGgGaAloD0MIVBwHXq0pY0CUhpRSlGgVTegDaBZHQJURCcXm/351fZQoaAZoCWgPQwhqMA3DRxxoQJSGlFKUaBVN6ANoFkdAlRHagyuZC3V9lChoBmgJaA9DCAItXcG29GBAlIaUUpRoFU3oA2gWR0CVEtJsO5J9dX2UKGgGaAloD0MIpKZdTLMYYECUhpRSlGgVTegDaBZHQJUS/tAs0551fZQoaAZoCWgPQwgKE0azshhlQJSGlFKUaBVN6ANoFkdAlRlmPHT7VXV9lChoBmgJaA9DCE1qaAOwATRAlIaUUpRoFU0dAWgWR0CVM6PRRdhRdX2UKGgGaAloD0MIh/nyAuwDZUCUhpRSlGgVTegDaBZHQJVTqzsyBTZ1fZQoaAZoCWgPQwhL6C6Js2RjQJSGlFKUaBVN6ANoFkdAlVvk+X7cf3V9lChoBmgJaA9DCFg4SfNHsmJAlIaUUpRoFU3oA2gWR0CVYLbF0gbIdX2UKGgGaAloD0MIvjEEAMcmTkCUhpRSlGgVS/RoFkdAlWIZ0jkdWHV9lChoBmgJaA9DCDmc+dUcWWNAlIaUUpRoFU3oA2gWR0CVYy1yNn5BdX2UKGgGaAloD0MI3C3JAbtzYECUhpRSlGgVTegDaBZHQJVkGqtHQQd1fZQoaAZoCWgPQwhR+GwdHOxiQJSGlFKUaBVN6ANoFkdAlWeQmZ3LWHV9lChoBmgJaA9DCP9dnznrimJAlIaUUpRoFU3oA2gWR0CVaBmPHT7VdX2UKGgGaAloD0MI4jrGFRdWZkCUhpRSlGgVTegDaBZHQJVrjT8YQ8R1fZQoaAZoCWgPQwgtQrEVtEBgQJSGlFKUaBVN6ANoFkdAlXE/TPSlWXV9lChoBmgJaA9DCCGQSxz5umFAlIaUUpRoFU3oA2gWR0CVcpsd1dPddX2UKGgGaAloD0MIBYasbvVkIUCUhpRSlGgVTR4BaBZHQJVzI9A5aNd1fZQoaAZoCWgPQwgcYVERp8FeQJSGlFKUaBVN6ANoFkdAlXPqNIbwSnV9lChoBmgJaA9DCDFCeLTxhmRAlIaUUpRoFU3oA2gWR0CVdENKAavSdX2UKGgGaAloD0MI5pMVw1W1Y0CUhpRSlGgVTegDaBZHQJV0wGqxTsJ1fZQoaAZoCWgPQwjCFVCoJwNiQJSGlFKUaBVN6ANoFkdAlXWbe2uxKXV9lChoBmgJaA9DCBNlbynn5GJAlIaUUpRoFU3oA2gWR0CVdc9Htnf3dX2UKGgGaAloD0MIpbxWQndDSkCUhpRSlGgVTUEBaBZHQJWOJmXgLql1fZQoaAZoCWgPQwheK6G7pPdgQJSGlFKUaBVN6ANoFkdAlZltZq20A3V9lChoBmgJaA9DCEfGavN/i2BAlIaUUpRoFU3oA2gWR0CVtnt03fhudX2UKGgGaAloD0MIGf8+48JmZUCUhpRSlGgVTegDaBZHQJW89qHoHLR1fZQoaAZoCWgPQwghrweTYkRkQJSGlFKUaBVN6ANoFkdAlb7hIBikPHV9lChoBmgJaA9DCLvvGB57b2BAlIaUUpRoFU3oA2gWR0CVweh4dIXkdX2UKGgGaAloD0MIPfGcLaCiYkCUhpRSlGgVTegDaBZHQJXHBBzFMqV1fZQoaAZoCWgPQwhX0LTEymRnQJSGlFKUaBVN6ANoFkdAlcejArQPZ3V9lChoBmgJaA9DCK5lMhxPBmFAlIaUUpRoFU3oA2gWR0CVy7jqOcUedX2UKGgGaAloD0MIYCNJEK7AEkCUhpRSlGgVS/hoFkdAlc9sBp5/snV9lChoBmgJaA9DCMZNDTSf115AlIaUUpRoFU3oA2gWR0CV0fSIgvDhdX2UKGgGaAloD0MItTaN7bX4O0CUhpRSlGgVS/9oFkdAldL32IwdsHV9lChoBmgJaA9DCOkOYmcKSGRAlIaUUpRoFU3oA2gWR0CV02jvd/KAdX2UKGgGaAloD0MItyizQaaOYkCUhpRSlGgVTegDaBZHQJXT7tgKF7F1fZQoaAZoCWgPQwiw4lRr4cFiQJSGlFKUaBVN6ANoFkdAldSpkoWpInV9lChoBmgJaA9DCG8qUmFs4WRAlIaUUpRoFU3oA2gWR0CV1PM4cWCVdX2UKGgGaAloD0MIDB8RUyJjX0CUhpRSlGgVTegDaBZHQJXVZxNqQBB1fZQoaAZoCWgPQwj99J81v3lgQJSGlFKUaBVN6ANoFkdAldYwdOqNqHV9lChoBmgJaA9DCDMa+bziGSDAlIaUUpRoFUvFaBZHQJXeGDXe3x51fZQoaAZoCWgPQwhNoIhFjKdkQJSGlFKUaBVN6ANoFkdAleamJJoTPHV9lChoBmgJaA9DCOVhoda0NGNAlIaUUpRoFU3oA2gWR0CV8btMPBi1dX2UKGgGaAloD0MIhpM0f0zbZUCUhpRSlGgVTegDaBZHQJYR3eKsMiN1fZQoaAZoCWgPQwjIef8fJ2JfQJSGlFKUaBVN6ANoFkdAlhfqWTot+XV9lChoBmgJaA9DCI0N3ewPZGZAlIaUUpRoFU3oA2gWR0CWHeUqQRwqdX2UKGgGaAloD0MI4Ec17HdLY0CUhpRSlGgVTegDaBZHQJYejmKZUkx1fZQoaAZoCWgPQwiBP/z8989kQJSGlFKUaBVN6ANoFkdAliOWLk0aZXV9lChoBmgJaA9DCGIRww7jt2RAlIaUUpRoFU3oA2gWR0CWJ7Ms6JZXdX2UKGgGaAloD0MI9Pxpozp3QUCUhpRSlGgVS7JoFkdAlioSElE7XHV9lChoBmgJaA9DCMrBbAIMBWBAlIaUUpRoFU3oA2gWR0CWKkGx2SuAdX2UKGgGaAloD0MINSpwso37YUCUhpRSlGgVTegDaBZHQJYrkaFVT751fZQoaAZoCWgPQwjuXBjpxYViQJSGlFKUaBVN6ANoFkdAliwbDQ7cPHV9lChoBmgJaA9DCKD6B5GMSmNAlIaUUpRoFU3oA2gWR0CWLLjx0+1SdX2UKGgGaAloD0MIO1J95xcVZkCUhpRSlGgVTegDaBZHQJYtkpz90ih1fZQoaAZoCWgPQwgJ3pBGhQljQJSGlFKUaBVN6ANoFkdAli3us5n14HV9lChoBmgJaA9DCOuNWmH6J2RAlIaUUpRoFU3oA2gWR0CWL6s/IKc/dX2UKGgGaAloD0MI4IRCBBxERUCUhpRSlGgVTQMBaBZHQJY7O9PDYRN1fZQoaAZoCWgPQwgKStHKvQBiQJSGlFKUaBVN6ANoFkdAljtm+TNdJXV9lChoBmgJaA9DCExw6gNJumZAlIaUUpRoFU3oA2gWR0CWRO0UXYUWdX2UKGgGaAloD0MI4/viUpUMQ0CUhpRSlGgVS75oFkdAlkhBy8zyjHV9lChoBmgJaA9DCAmocASpvGFAlIaUUpRoFU3oA2gWR0CWTvRYigTRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-default-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df0017c0bad2526274a415d7f3f93b12a0c8574e85a16543787d2ffb377f3e6c
|
3 |
+
size 147412
|
ppo-default-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-default-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb18156e280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb18156e310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb18156e3a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb18156e430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb18156e4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb18156e550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb18156e5e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb18156e670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb18156e700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb18156e790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb18156e820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb18156e8b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fb181568870>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677962199612429031,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDkHj6QI4A/luIhPsc3t77HfIs982ogPQAAAAAAAAAAAGXavMMNK7or56O7zW57tn+/KjvVs7s6AACAPwAAgD8a7Zm99tRPutgZhzvTD2k4zztDu0IJKboAAIA/AACAP023mz323Fy6rjm0vBILBT2qJ0S6vmzlvQAAgD8AAIA/Tc0tvcPxW7oVCfG4ZvQmtMCNL7obgQw4AACAPwAAgD+a+cm9PdpbuWPoZ7tjY8o8VnqtuzGeE7wAAIA/AACAP0C4lr2ufa66SjfeOv60hDYD4Wo6CkP+uQAAgD8AAIA/zaUzvUiHh7rqbpm7ALfqtjwqlrrucbI6AACAPwAAgD+afIC8SMeJuj8PKDylxdm1eQvqOVLhw7QAAIA/AACAPwDVab2uoaK6NgZSuwEeSjj+Gge6TSLmOQAAgD8AAIA/xqKSvpPNBT9w604+7qBsvvOTxLsQoeo8AAAAAAAAAABNuIy9bhyLPn2tqDyDBWG+KQOJuxYBuj0AAAAAAAAAAHOUmr1IpY26eL0iPImYfDZdnga73bhrNQAAgD8AAIA/zQr9PIWjobkOati7tiRVtgWTk7vyrMc1AACAPwAAgD8ACla8Kbgcuq3ijbq074K1xOSCuQASqTkAAIA/AACAP81SJbzh0Im6NYH/uFfb5rNMEgm4AYIUOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIa2PshJevYUCUhpRSlIwBbJRN6AOMAXSUR0CUWEx2St/4dX2UKGgGaAloD0MIzCVV2004Z0CUhpRSlGgVTegDaBZHQJRZLhky1u11fZQoaAZoCWgPQwh7SWO0juRjQJSGlFKUaBVN6ANoFkdAlFqIA80UGnV9lChoBmgJaA9DCKa6gJeZ2WRAlIaUUpRoFU3oA2gWR0CUY5ALy+YddX2UKGgGaAloD0MIRiI0gg29ZkCUhpRSlGgVTegDaBZHQJRrWl3yI551fZQoaAZoCWgPQwj/sKVHUzdnQJSGlFKUaBVN6ANoFkdAlJKEFjd56nV9lChoBmgJaA9DCOEIUil2uVtAlIaUUpRoFU3oA2gWR0CUk1N70Fr3dX2UKGgGaAloD0MIUb8LW7OdOECUhpRSlGgVTQ8BaBZHQJSXJIJ7b+N1fZQoaAZoCWgPQwjrjVph+jJgQJSGlFKUaBVN6ANoFkdAlJxYt6HCXXV9lChoBmgJaA9DCNl5G5udjmRAlIaUUpRoFU3oA2gWR0CUoFcH4XXRdX2UKGgGaAloD0MIdZKtLifOZkCUhpRSlGgVTegDaBZHQJSidQJokAx1fZQoaAZoCWgPQwhLj6Z6Mr1gQJSGlFKUaBVN6ANoFkdAlKMBf4REnnV9lChoBmgJaA9DCENVTKWfu2VAlIaUUpRoFU3oA2gWR0CUpIsyBTXKdX2UKGgGaAloD0MIejiB6bTIYkCUhpRSlGgVTegDaBZHQJSlXn5i3G51fZQoaAZoCWgPQwi5/l2fuYRjQJSGlFKUaBVN6ANoFkdAlKZILG7z1HV9lChoBmgJaA9DCC+ISE27iDBAlIaUUpRoFUv5aBZHQJSmwtNBWxR1fZQoaAZoCWgPQwhINIEiFophQJSGlFKUaBVN6ANoFkdAlKn7tzCDVnV9lChoBmgJaA9DCIqRJXMsN0pAlIaUUpRoFUv1aBZHQJSvaPtD2J11fZQoaAZoCWgPQwgaFM0DWD1kQJSGlFKUaBVN6ANoFkdAlLC3rt3OfXV9lChoBmgJaA9DCHlafuAqq0FAlIaUUpRoFU0GAWgWR0CUsgjMFEApdX2UKGgGaAloD0MIUbzK2iZ8YECUhpRSlGgVTegDaBZHQJSyW98JD3N1fZQoaAZoCWgPQwjVzFoKyIliQJSGlFKUaBVN6ANoFkdAlLLf2oNutXV9lChoBmgJaA9DCNi2KLPBWWBAlIaUUpRoFU3oA2gWR0CUs5vzvqkedX2UKGgGaAloD0MIamyvBb03/j+UhpRSlGgVTRkBaBZHQJSzwvduYQd1fZQoaAZoCWgPQwiYhuEjYn5hQJSGlFKUaBVN6ANoFkdAlLm+CXhOxnV9lChoBmgJaA9DCIaTNH9MN2ZAlIaUUpRoFU3oA2gWR0CU6inaWX1KdX2UKGgGaAloD0MI/WfNjz+jZUCUhpRSlGgVTegDaBZHQJTqyZXuE251fZQoaAZoCWgPQwjq501FqjliQJSGlFKUaBVN6ANoFkdAlPKYNqgyunV9lChoBmgJaA9DCJpC5zX2vmJAlIaUUpRoFU3oA2gWR0CU9wD8LroodX2UKGgGaAloD0MIBaOSOgGUZkCUhpRSlGgVTegDaBZHQJT5Nc1O0sx1fZQoaAZoCWgPQwhJhEawcW9LQJSGlFKUaBVL42gWR0CU+jJOWSlndX2UKGgGaAloD0MIH9sy4CxcZ0CUhpRSlGgVTegDaBZHQJT+RfMOf/Z1fZQoaAZoCWgPQwg4gem07lxiQJSGlFKUaBVN6ANoFkdAlP8gB5ooNXV9lChoBmgJaA9DCNpYiXnWt2FAlIaUUpRoFU3oA2gWR0CVBJQOnVG1dX2UKGgGaAloD0MIGhpPBPEhZECUhpRSlGgVTegDaBZHQJUMvZPEbYN1fZQoaAZoCWgPQwjNP/omzdNhQJSGlFKUaBVN6ANoFkdAlQ6vCZWq+HV9lChoBmgJaA9DCFcnZyhuX2dAlIaUUpRoFU3oA2gWR0CVEJXnyNGWdX2UKGgGaAloD0MIVBwHXq0pY0CUhpRSlGgVTegDaBZHQJURCcXm/351fZQoaAZoCWgPQwhqMA3DRxxoQJSGlFKUaBVN6ANoFkdAlRHagyuZC3V9lChoBmgJaA9DCAItXcG29GBAlIaUUpRoFU3oA2gWR0CVEtJsO5J9dX2UKGgGaAloD0MIpKZdTLMYYECUhpRSlGgVTegDaBZHQJUS/tAs0551fZQoaAZoCWgPQwgKE0azshhlQJSGlFKUaBVN6ANoFkdAlRlmPHT7VXV9lChoBmgJaA9DCE1qaAOwATRAlIaUUpRoFU0dAWgWR0CVM6PRRdhRdX2UKGgGaAloD0MIh/nyAuwDZUCUhpRSlGgVTegDaBZHQJVTqzsyBTZ1fZQoaAZoCWgPQwhL6C6Js2RjQJSGlFKUaBVN6ANoFkdAlVvk+X7cf3V9lChoBmgJaA9DCFg4SfNHsmJAlIaUUpRoFU3oA2gWR0CVYLbF0gbIdX2UKGgGaAloD0MIvjEEAMcmTkCUhpRSlGgVS/RoFkdAlWIZ0jkdWHV9lChoBmgJaA9DCDmc+dUcWWNAlIaUUpRoFU3oA2gWR0CVYy1yNn5BdX2UKGgGaAloD0MI3C3JAbtzYECUhpRSlGgVTegDaBZHQJVkGqtHQQd1fZQoaAZoCWgPQwhR+GwdHOxiQJSGlFKUaBVN6ANoFkdAlWeQmZ3LWHV9lChoBmgJaA9DCP9dnznrimJAlIaUUpRoFU3oA2gWR0CVaBmPHT7VdX2UKGgGaAloD0MI4jrGFRdWZkCUhpRSlGgVTegDaBZHQJVrjT8YQ8R1fZQoaAZoCWgPQwgtQrEVtEBgQJSGlFKUaBVN6ANoFkdAlXE/TPSlWXV9lChoBmgJaA9DCCGQSxz5umFAlIaUUpRoFU3oA2gWR0CVcpsd1dPddX2UKGgGaAloD0MIBYasbvVkIUCUhpRSlGgVTR4BaBZHQJVzI9A5aNd1fZQoaAZoCWgPQwgcYVERp8FeQJSGlFKUaBVN6ANoFkdAlXPqNIbwSnV9lChoBmgJaA9DCDFCeLTxhmRAlIaUUpRoFU3oA2gWR0CVdENKAavSdX2UKGgGaAloD0MI5pMVw1W1Y0CUhpRSlGgVTegDaBZHQJV0wGqxTsJ1fZQoaAZoCWgPQwjCFVCoJwNiQJSGlFKUaBVN6ANoFkdAlXWbe2uxKXV9lChoBmgJaA9DCBNlbynn5GJAlIaUUpRoFU3oA2gWR0CVdc9Htnf3dX2UKGgGaAloD0MIpbxWQndDSkCUhpRSlGgVTUEBaBZHQJWOJmXgLql1fZQoaAZoCWgPQwheK6G7pPdgQJSGlFKUaBVN6ANoFkdAlZltZq20A3V9lChoBmgJaA9DCEfGavN/i2BAlIaUUpRoFU3oA2gWR0CVtnt03fhudX2UKGgGaAloD0MIGf8+48JmZUCUhpRSlGgVTegDaBZHQJW89qHoHLR1fZQoaAZoCWgPQwghrweTYkRkQJSGlFKUaBVN6ANoFkdAlb7hIBikPHV9lChoBmgJaA9DCLvvGB57b2BAlIaUUpRoFU3oA2gWR0CVweh4dIXkdX2UKGgGaAloD0MIPfGcLaCiYkCUhpRSlGgVTegDaBZHQJXHBBzFMqV1fZQoaAZoCWgPQwhX0LTEymRnQJSGlFKUaBVN6ANoFkdAlcejArQPZ3V9lChoBmgJaA9DCK5lMhxPBmFAlIaUUpRoFU3oA2gWR0CVy7jqOcUedX2UKGgGaAloD0MIYCNJEK7AEkCUhpRSlGgVS/hoFkdAlc9sBp5/snV9lChoBmgJaA9DCMZNDTSf115AlIaUUpRoFU3oA2gWR0CV0fSIgvDhdX2UKGgGaAloD0MItTaN7bX4O0CUhpRSlGgVS/9oFkdAldL32IwdsHV9lChoBmgJaA9DCOkOYmcKSGRAlIaUUpRoFU3oA2gWR0CV02jvd/KAdX2UKGgGaAloD0MItyizQaaOYkCUhpRSlGgVTegDaBZHQJXT7tgKF7F1fZQoaAZoCWgPQwiw4lRr4cFiQJSGlFKUaBVN6ANoFkdAldSpkoWpInV9lChoBmgJaA9DCG8qUmFs4WRAlIaUUpRoFU3oA2gWR0CV1PM4cWCVdX2UKGgGaAloD0MIDB8RUyJjX0CUhpRSlGgVTegDaBZHQJXVZxNqQBB1fZQoaAZoCWgPQwj99J81v3lgQJSGlFKUaBVN6ANoFkdAldYwdOqNqHV9lChoBmgJaA9DCDMa+bziGSDAlIaUUpRoFUvFaBZHQJXeGDXe3x51fZQoaAZoCWgPQwhNoIhFjKdkQJSGlFKUaBVN6ANoFkdAleamJJoTPHV9lChoBmgJaA9DCOVhoda0NGNAlIaUUpRoFU3oA2gWR0CV8btMPBi1dX2UKGgGaAloD0MIhpM0f0zbZUCUhpRSlGgVTegDaBZHQJYR3eKsMiN1fZQoaAZoCWgPQwjIef8fJ2JfQJSGlFKUaBVN6ANoFkdAlhfqWTot+XV9lChoBmgJaA9DCI0N3ewPZGZAlIaUUpRoFU3oA2gWR0CWHeUqQRwqdX2UKGgGaAloD0MI4Ec17HdLY0CUhpRSlGgVTegDaBZHQJYejmKZUkx1fZQoaAZoCWgPQwiBP/z8989kQJSGlFKUaBVN6ANoFkdAliOWLk0aZXV9lChoBmgJaA9DCGIRww7jt2RAlIaUUpRoFU3oA2gWR0CWJ7Ms6JZXdX2UKGgGaAloD0MI9Pxpozp3QUCUhpRSlGgVS7JoFkdAlioSElE7XHV9lChoBmgJaA9DCMrBbAIMBWBAlIaUUpRoFU3oA2gWR0CWKkGx2SuAdX2UKGgGaAloD0MINSpwso37YUCUhpRSlGgVTegDaBZHQJYrkaFVT751fZQoaAZoCWgPQwjuXBjpxYViQJSGlFKUaBVN6ANoFkdAliwbDQ7cPHV9lChoBmgJaA9DCKD6B5GMSmNAlIaUUpRoFU3oA2gWR0CWLLjx0+1SdX2UKGgGaAloD0MIO1J95xcVZkCUhpRSlGgVTegDaBZHQJYtkpz90ih1fZQoaAZoCWgPQwgJ3pBGhQljQJSGlFKUaBVN6ANoFkdAli3us5n14HV9lChoBmgJaA9DCOuNWmH6J2RAlIaUUpRoFU3oA2gWR0CWL6s/IKc/dX2UKGgGaAloD0MI4IRCBBxERUCUhpRSlGgVTQMBaBZHQJY7O9PDYRN1fZQoaAZoCWgPQwgKStHKvQBiQJSGlFKUaBVN6ANoFkdAljtm+TNdJXV9lChoBmgJaA9DCExw6gNJumZAlIaUUpRoFU3oA2gWR0CWRO0UXYUWdX2UKGgGaAloD0MI4/viUpUMQ0CUhpRSlGgVS75oFkdAlkhBy8zyjHV9lChoBmgJaA9DCAmocASpvGFAlIaUUpRoFU3oA2gWR0CWTvRYigTRdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-default-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47b7b8a907b633d6ba5443650a57528c444de8c1dc278afcfb2a62e9d8b0399a
|
3 |
+
size 87929
|
ppo-default-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6624ce0f2f612776eb79e58c4e33e092ce88e7d10da5ee52f332c6a3a9300263
|
3 |
+
size 43393
|
ppo-default-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-default-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (199 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.87933403561428, "std_reward": 26.284813313941868, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T21:01:15.025699"}
|